Advertisement

Macroanalysis in the Arts and Sciences

Chapter
  • 390 Downloads

Abstract

Macroanalysis is a transdisciplinary intellectual concept offering opportunities to engage students in the role that large-scale computer modeling and simulation play in complex decision-making. Since many of our most pressing social, economic and political problems now require thinking, modeling and computation at extremely large spatial and temporal scales, the time is right for educators to reconsider the role of computing at scale in the arts and sciences. Macroanalysis, as conceived in this chapter, is positioned to contribute to virtually every discipline in higher education. Although the commercial consequences of these large-scale analyses have been considered particularly under the moniker of big data, the civic, cultural and educational consequences of such analyses have often been of secondary concern. Current trends in macroanalytic thinking suggest that citizens will consume ever more virtual evidence derived from large-scale models and simulations as a natural consequence of the complex problems facing society. This chapter outlines the themes of macroanalytic thinking, surveys their application in the arts and sciences, and argues for a broad approach to macroanalytic education on civic grounds. As educators, we can prepare students to respond to the large-scale analyses driving many of the important decisions of our time.

Keywords

Macroanalysis Wicked problems Modeling Simulation Virtual evidence Computing education Interdisciplinary 

References

  1. Adamic, L. A., & Glance, N. (2005). The political blogosphere and the 2004 US election: Divided they blog. In Proceedings of the 3rd International Workshop on Link discovery (pp. 36–43). ACM. Google Scholar
  2. Anderson, P. W. (1972). More is different. Science, 177(4047), 393–396.CrossRefGoogle Scholar
  3. Angles, R., & Gutierrez, C. (2008). Survey of graph database models. ACM Computing Surveys (CSUR), 40(1), 1.CrossRefGoogle Scholar
  4. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al. (2000). Gene Ontology: Tool for the unification of biology. Nature Genetics, 25(1), 25–29.CrossRefGoogle Scholar
  5. Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks. Presented at the International AAAI Conference on Weblogs and Social Media. Retrieved from http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
  6. Batagelj, V., & Mrvar, A. (2003). Pajek—analysis and visualization of large networks. In Graph Drawing Software (pp. 77–103). Springer.Google Scholar
  7. Bell, G., Hey, T., & Szalay, A. (2009). Beyond the data deluge. Science, 323(5919), 1297–1298. doi: 10.1126/science.1170411
  8. Bodenhamer, D. J. (2010). The potential of spatial humanities. In D. J. Bodenhamer, J. Corrigan, & T. M. Harris (Eds.), The spatial humanities: GIS and the future of humanities scholarship. USA: Indiana University Press.Google Scholar
  9. Bolstad, P. (2016). GIS fundamentals: A first text on geographic information systems (5th ed.). Eider Press.Google Scholar
  10. Buonaccorsi, V., Peterson, M., Lamendella, G., Newman, J., Trun, N., Tobin, T., et al. (2014). Vision and change through the Genome Consortium for Active Teaching Using Next-Generation Sequencing (GCAT-SEEK). CBE Life Sciences Education, 13(1), 1–2. doi: 10.1187/cbe.13-10-0195
  11. Conover, M., Ratkiewicz, J., Francisco, M. R., Gonçalves, B., Menczer, F., & Flammini, A. (2011). Political polarization on twitter. ICWSM, 133, 89–96.Google Scholar
  12. Cortez, P. (2010). Modern optimization with R. Springer.Google Scholar
  13. Cramer, C., Sheetz, L., Sayama, H., Trunfio, P., Stanley, H. E., & Uzzo, S. (2015). NetSci High: Bringing Network science research to high schools. In G. Mangioni, F. Simini, M. S. Uzzo, & D. Wang (Eds.), Complex networks VI: Proceedings of the 6th Workshop on Complex Networks CompleNet 2015 (pp. 209–218). Cham: Springer International Publishing. Retrieved from doi: 10.1007/978-3-319-16112-9_21
  14. de Nooy, W., Mrvar, A., & Batagelj, V. (2011). Exploratory social network analysis with Pajek. Cambridge University Press.Google Scholar
  15. den Broeck, W. V., Gioannini, C., Gonçalves, B., Quaggiotto, M., Colizza, V., & Vespignani, A. (2011). The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale. BMC Infectious Diseases, 11(1), 1–14. doi: 10.1186/1471-2334-11-37
  16. Easley, D., & Kleinberg, J. (2010). Networks, crowds and markets: Reasoning about a Highly Connected World. UK: Oxford University Press.CrossRefGoogle Scholar
  17. Gene Ontology Consortium. (2015). Gene ontology consortium: Going forward. Nucleic Acids Research, 43(D1), D1049–D1056. doi: 10.1093/nar/gku1179
  18. Graham, S., Milligan, I., & Weingart, S. (2016). Exploring big historical data: The Historian’s macroscope. London: Imperial College Press.Google Scholar
  19. Gruber, T. (2009). Ontology. In L. Liu & M. T. Özsu (Eds.), Encyclopedia of database systems. Springer. Retrieved from http://tomgruber.org/writing/ontology-definition-2007.htm
  20. Jockers, M. L. (2013). Macroanalysis: Digital methods & literary history. Urbana, Chicago and Springfield: University of Illinois Press.Google Scholar
  21. Jockers, M. L. (2014). Text analysis with R for students of literature. Springer.Google Scholar
  22. John Shimkus: Biography. (2012). Retrieved from https://www.shimkus.house.gov/about/full-biography
  23. Kinnunen, P., Meisalo, V., & Malmi, L. (2010). Have we missed something?: Identifying missing types of research in computing education. In Proceedings of the Sixth International Workshop on Computing Education Research (pp. 13–22). New York, NY, USA: ACM. doi: 10.1145/1839594.1839598
  24. Lazarus, R. J. (2009). Super wicked problems and climate change: Restraining the present to liberate the future. Cornell Law Review, 94(5), 1153–1233.Google Scholar
  25. Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A.-L., Brewer, D., et al. (2009). Computational Social Science. Science, 323(5915), 721–723. doi: 10.1126/science.1167742
  26. Lesk, A. M. (2014). Introduction to bioinformatics (4th ed.). Oxford: Oxford University Press.Google Scholar
  27. Levin, K., Cashore, B., Bernstein, S., & Auld, G. (2009). Playing it forward: Path dependency, progressive incrementalism, and the “Super Wicked” problem of global climate change. IOP Conference Series: Earth and Environmental Science, 6(50), 502002.CrossRefGoogle Scholar
  28. Levy, S. (2012). Can an algorithm write a better story than a human reporter? Wired. Retrieved from http://www.wired.com/2012/04/can-an-algorithm-write-a-better-news-story-than-a-human-reporter/
  29. Lynch, M. P. (2016). The internet of us. New York and London: Liveright Publishing.Google Scholar
  30. Marchiori, M., & Possamai, L. (2015). Micro-macro analysis of complex networks. PLoS ONE, 10(1), e0116670.CrossRefGoogle Scholar
  31. Mayer-Schönberger, V., & Cukier, K. (2013). Big data: A revolution that will transform how we live, work, and think. Houghton Mifflin Harcourt.Google Scholar
  32. Metzker, M. L., Mindell, D. P., Liu, X. -M., Ptak, R. G., Gibbs, R. A., & Hillis, D. M. (2002). Molecular evidence of HIV-1 transmission in a criminal case. In Proceedings of the National Academy of Sciences of the United States of America, 99(22), 14292–14297. doi: 10.1073/pnas.222522599
  33. Michel, J. -B., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K., Pickett, J. P., et al. (2011). Quantitative Analysis of culture using millions of digitized books. Science, 331(6014), 176–182. doi: 10.1126/science.1199644
  34. MOBS Lab. (2014). Ebola—MOBS. Retrieved from http://www.mobs-lab.org/ebola.html
  35. Moody, J. (2001). Race, school integration, and friendship segregation in America. American Journal of Sociology, 107(3), 679–716.CrossRefGoogle Scholar
  36. Moretti, F. (2000). Conjectures on world literature. New Left Review, 1. Retrieved from https://newleftreview.org/II/1/franco-moretti-conjectures-on-world-literature
  37. Moretti, F. (2007). Graphs, maps, trees: Abstract models for literary history. London and New York: Verso.Google Scholar
  38. NetSciEd. (2015). Network literacy: Essential concepts and core ideas. Retrieved from https://www.sites.google.com/a/binghamton.edu/netscied/teaching-learning/network-concepts
  39. Newman, M. (2010). Networks: An introduction. Oxford: Oxford University Press.CrossRefGoogle Scholar
  40. Parter, M., Kashtan, N., & Alon, U. (2008). Facilitated variation: How evolution learns from past environments to generalize to new environments. PLoS Computational Biology, 4(11), e1000206. doi: 10.1371/journal.pcbi.1000206
  41. Petersen, A. C. (2000). Philosophy of climate science. Bulletin of the American Meteorological Society, 81(2), 265–271. doi: 10.1175/1520-0477(2000)081<0265:POCS>2.3.CO;2
  42. Postman, N. (1993). Technopoly: The surrender of culture to technology. New York: Vintage Books.Google Scholar
  43. R Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
  44. Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4, 155–169.CrossRefGoogle Scholar
  45. RNA-Seq for the Next Generation. (2014). Cold Spring Harbor Laboratory. Retrieved from http://www.rnaseqforthenextgeneration.org/
  46. Roundtree, A. K. (2013). Computer simulation, rhetoric, and the scientific imagination: How virtual evidence shapes science in the making and in the news. Lexington Books.Google Scholar
  47. Samuelsohn, D. (2010, November 10). Shimkus cites Genesis on climate. Politco.com. Retrieved from http://www.politico.com/story/2010/11/shimkus-cites-genesis-on-climate-044958
  48. Samuelsson, T. (2012). Genomics and bioinformatics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  49. Schneider, G. M., Schwalbe, D., & Halverson, T. M. (1998). Teaching computational science in a liberal arts environment. SIGCSE Bull., 30(2), 57–60.CrossRefGoogle Scholar
  50. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. doi: 10.1101/gr.1239303
  51. Shmueli, G. (2010). To explain or predict? Statistical Science, 25(3), 289–310.CrossRefGoogle Scholar
  52. Silva, Y. N., Almeida, I., & Queiroz, M. (2016). SQL: From traditional databases to big data. In Proceedings of the 47th ACM Technical Symposium on Computing Science Education (pp. 413–418). ACM.Google Scholar
  53. Sokolowski, J. A., & Banks, C. M. (Eds.). (2009). Principles of modeling and simulation: A multidisciplinary approach. Hoboken, NJ: Wiley.Google Scholar
  54. Tizzoni, M., Bajardi, P., Poletto, C., Ramasco, J. J., Balcan, D., Gonçalves, B., et al. (2012). Real-time numerical forecast of global epidemic spreading: Case study of 2009 A/H1N1pdm. BMC Medicine, 10(1), 1–31. doi: 10.1186/1741-7015-10-165
  55. United States. (2012). Preparing for climate change: Adaptation policies and programs: Hearing before the subcommittee on energy and environment of the committee on energy and commerce, house of representatives, one hundred eleventh congress, first session, March 25, 2009. Washington: U.S. G.P.O.Google Scholar
  56. Waal, H., & Couprie, L. D. (1974). Iconclass: An iconographic classification system. Amsterdam: North Holland Publishing Company. Retrieved from http://www.iconclass.nl/home
  57. Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.CrossRefGoogle Scholar
  58. Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725. doi: 10.1098/rsta.2008.0118

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of the Virgin IslandsSt. ThomasUSA

Personalised recommendations