Skip to main content

Access Time Eccentricity and Diameter

  • Chapter
  • First Online:
Positive Systems (POSTA 2016)

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 471))

Included in the following conference series:

  • 670 Accesses

Abstract

In this chapter we study the access time on random walks, i.e., the expected time for a random walk starting at a node \(v_i\) to reach a node \(v_j\), an index that can be easily calculated resorting to the powerful tools of positive systems. In particular, we argue that such an index can be the base for developing novel topological descriptors, namely access time eccentricity and diameter. While regular eccentricities and diameter are defined considering minimum paths, the indices defined in this chapter are related to random movements across the network, which may follow inefficient paths, and are thus a complementary measure to identify central and peripheral nodes and to set adequate time-to-live for the packets in a network of distributed agents, where few or no routing information is available. A simulation campaign aimed at showing the characteristics of the proposed indices concludes the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Each entry \(M_{ij}\) represents the probability to move from node i to node j at a given time instant.

  2. 2.

    A graph is d-regular if the degree of each node is d.

References

  1. Pearson, K.: The problem of the random walk. Nature 72(1867), 342 (1905)

    Article  MATH  Google Scholar 

  2. Lovász, L.: Random walks on graphs: a survey. Combinatorics, special volume “Paul Erdos is Eighty” no. 2 pp. 353–398 (1996)

    Google Scholar 

  3. Erdene-Ochir, O., Abdallah, M., Qaraqe, K., Minier, M., Valois, F.: A theoretical framework of resilience: biased random walk routing against insider attacks. In: Wireless Communications and Networking Conference (WCNC), 2015 IEEE, pp. 1602–1607. IEEE, March (2015)

    Google Scholar 

  4. Verma, R.K., Das, A.X., Jaiswal, A.K.: Effective performance of location aided routing protocol on random walk (RW) mobility model using constant bit rate (CBR). Int. J. Comput. Appl. 122(14) (2015)

    Google Scholar 

  5. Varadarajan, A., Oswald, F., Bollen, Y.J., Peterman, E.J.: Membrane-protein diffusion in E. coli: a random walk in a heterogeneous landscape. Biophys. J. 108(2), 323a (2015)

    Article  Google Scholar 

  6. Jones, P.J.M., Sim, A., Taylor, H.B., Bugeon, L., Dallman, M.J., Pereira, B., Stumpf, M.P.H., Liepe, J.: Inference of random walk models to describe leukocyte migration. Phys. Biol. 12(6), 066001 (2015)

    Google Scholar 

  7. Sadorsky, P.: Forecasting Canadian mortgage rates. Appl. Econ. Lett. 1–4 (2015)

    Google Scholar 

  8. Ballester, C., Vorsatz, M.: Random walk-based segregation measures. Rev. Econ. Stat. 96(3), 383–401 (2014)

    Article  Google Scholar 

  9. Nosofsky, R.M., Palmeri, T.J., Nosofsky, R.: An exemplar-based random-walk model of categorization and recognition. The Oxford Handbook of Computational and Mathematical Psychology, vol. 142 (2015)

    Google Scholar 

  10. Han-Lim, C., Brunet, L., How, J.P.: Consensus-based decentralized auctions for robust task allocation. IEEE Trans. Robot. 25(4), 912–926 (2009)

    Article  Google Scholar 

  11. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  12. Oliva, G., Setola, R., Hadjicostis, C.: Distributed finite-time calculation of node eccentricities, graph radius and graph diameter. Syst. Control Lett. 92, 20–27 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Oliva, G., Setola, R., Hadjicostis, C.: Distributed finite-time average-consensus with limited computational and storage capability. IEEE Trans. Control Netw. Syst. (early access article)

    Google Scholar 

  14. Lee, S., Belding-Royer, E.M., Perkins, C.E.: Scalability study of the ad hoc on-demand distance vector routing protocol. Int. J. Netw. Manage. 13(2), 97–114 (2003)

    Article  Google Scholar 

  15. Noh, J.D., Rieger, H.: Random walks on complex networks. Phys. Rev. Lett. 92(11), 118701–118704 (2004)

    Article  Google Scholar 

  16. Newman, M.E.: A measure of betweenness centrality based on random walks. Soc. Netw. 27(1), 39–54 (2005)

    Article  Google Scholar 

  17. Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks. MAA (1984)

    Google Scholar 

  18. Diaconis, P.: Group Representations in Probability and Statistics. Institute of Mathematical Statistics, Hayward, California (1988)

    Google Scholar 

  19. Tetali, P.: Random walks and the effective resistance of networks. J. Theor. Probab. 4(1), 101–109 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Matthews, P.: Covering problems for Brownian motion on spheres. The Annals of Probability, pp. 189–199 (1988)

    Google Scholar 

  21. Oliva, G., Panzieri, S., Pascucci, F., Setola, R.: Simultaneous localization and routing in sensor networks using shadow edges. In: 2013 IFAC Intelligent Autonomous Vehicles Symposium (IAV2013). Gold Coast, Australia, 26–28, pp. 199–204 (2013)

    Google Scholar 

  22. Oliva, G., Pascucci, F., Panzieri, S., Setola, R.: Sensor network localization: extending trilateration via shadow edges. IEEE Trans. Autom. Control 60(10), 2752–2755 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Oliva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Oliva, G., Scala, A., Setola, R., Glielmo, L. (2017). Access Time Eccentricity and Diameter. In: Cacace, F., Farina, L., Setola, R., Germani, A. (eds) Positive Systems . POSTA 2016. Lecture Notes in Control and Information Sciences, vol 471. Springer, Cham. https://doi.org/10.1007/978-3-319-54211-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54211-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54210-2

  • Online ISBN: 978-3-319-54211-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics