Access Time Eccentricity and Diameter

Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 471)


In this chapter we study the access time on random walks, i.e., the expected time for a random walk starting at a node \(v_i\) to reach a node \(v_j\), an index that can be easily calculated resorting to the powerful tools of positive systems. In particular, we argue that such an index can be the base for developing novel topological descriptors, namely access time eccentricity and diameter. While regular eccentricities and diameter are defined considering minimum paths, the indices defined in this chapter are related to random movements across the network, which may follow inefficient paths, and are thus a complementary measure to identify central and peripheral nodes and to set adequate time-to-live for the packets in a network of distributed agents, where few or no routing information is available. A simulation campaign aimed at showing the characteristics of the proposed indices concludes the chapter.


Random walk Access time Diameter Eccentricity 


  1. 1.
    Pearson, K.: The problem of the random walk. Nature 72(1867), 342 (1905)CrossRefzbMATHGoogle Scholar
  2. 2.
    Lovász, L.: Random walks on graphs: a survey. Combinatorics, special volume “Paul Erdos is Eighty” no. 2 pp. 353–398 (1996)Google Scholar
  3. 3.
    Erdene-Ochir, O., Abdallah, M., Qaraqe, K., Minier, M., Valois, F.: A theoretical framework of resilience: biased random walk routing against insider attacks. In: Wireless Communications and Networking Conference (WCNC), 2015 IEEE, pp. 1602–1607. IEEE, March (2015)Google Scholar
  4. 4.
    Verma, R.K., Das, A.X., Jaiswal, A.K.: Effective performance of location aided routing protocol on random walk (RW) mobility model using constant bit rate (CBR). Int. J. Comput. Appl. 122(14) (2015)Google Scholar
  5. 5.
    Varadarajan, A., Oswald, F., Bollen, Y.J., Peterman, E.J.: Membrane-protein diffusion in E. coli: a random walk in a heterogeneous landscape. Biophys. J. 108(2), 323a (2015)CrossRefGoogle Scholar
  6. 6.
    Jones, P.J.M., Sim, A., Taylor, H.B., Bugeon, L., Dallman, M.J., Pereira, B., Stumpf, M.P.H., Liepe, J.: Inference of random walk models to describe leukocyte migration. Phys. Biol. 12(6), 066001 (2015)Google Scholar
  7. 7.
    Sadorsky, P.: Forecasting Canadian mortgage rates. Appl. Econ. Lett. 1–4 (2015)Google Scholar
  8. 8.
    Ballester, C., Vorsatz, M.: Random walk-based segregation measures. Rev. Econ. Stat. 96(3), 383–401 (2014)CrossRefGoogle Scholar
  9. 9.
    Nosofsky, R.M., Palmeri, T.J., Nosofsky, R.: An exemplar-based random-walk model of categorization and recognition. The Oxford Handbook of Computational and Mathematical Psychology, vol. 142 (2015)Google Scholar
  10. 10.
    Han-Lim, C., Brunet, L., How, J.P.: Consensus-based decentralized auctions for robust task allocation. IEEE Trans. Robot. 25(4), 912–926 (2009)CrossRefGoogle Scholar
  11. 11.
    Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Oliva, G., Setola, R., Hadjicostis, C.: Distributed finite-time calculation of node eccentricities, graph radius and graph diameter. Syst. Control Lett. 92, 20–27 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Oliva, G., Setola, R., Hadjicostis, C.: Distributed finite-time average-consensus with limited computational and storage capability. IEEE Trans. Control Netw. Syst. (early access article)Google Scholar
  14. 14.
    Lee, S., Belding-Royer, E.M., Perkins, C.E.: Scalability study of the ad hoc on-demand distance vector routing protocol. Int. J. Netw. Manage. 13(2), 97–114 (2003)CrossRefGoogle Scholar
  15. 15.
    Noh, J.D., Rieger, H.: Random walks on complex networks. Phys. Rev. Lett. 92(11), 118701–118704 (2004)CrossRefGoogle Scholar
  16. 16.
    Newman, M.E.: A measure of betweenness centrality based on random walks. Soc. Netw. 27(1), 39–54 (2005)CrossRefGoogle Scholar
  17. 17.
    Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks. MAA (1984)Google Scholar
  18. 18.
    Diaconis, P.: Group Representations in Probability and Statistics. Institute of Mathematical Statistics, Hayward, California (1988)Google Scholar
  19. 19.
    Tetali, P.: Random walks and the effective resistance of networks. J. Theor. Probab. 4(1), 101–109 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Matthews, P.: Covering problems for Brownian motion on spheres. The Annals of Probability, pp. 189–199 (1988)Google Scholar
  21. 21.
    Oliva, G., Panzieri, S., Pascucci, F., Setola, R.: Simultaneous localization and routing in sensor networks using shadow edges. In: 2013 IFAC Intelligent Autonomous Vehicles Symposium (IAV2013). Gold Coast, Australia, 26–28, pp. 199–204 (2013)Google Scholar
  22. 22.
    Oliva, G., Pascucci, F., Panzieri, S., Setola, R.: Sensor network localization: extending trilateration via shadow edges. IEEE Trans. Autom. Control 60(10), 2752–2755 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Università Campus Bio-Medico di RomaRomeItaly
  2. 2.ISC-CNR UoS “Sapienza”RomaItaly
  3. 3.Universitá Degli Studi del SannioBeneventoItaly

Personalised recommendations