Skip to main content

Learning Contextual Dependencies for Optical Flow with Recurrent Neural Networks

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10114))

Included in the following conference series:

Abstract

Pixel-level prediction tasks, such as optical flow estimation, play an important role in computer vision. Recent approaches have attempted to use the feature learning capability of Convolutional Neural Networks (CNNs) to tackle dense per-pixel predictions. However, CNNs have not been as successful in optical flow estimation as they are in many other vision tasks, such as image classification and object detection. It is challenging to adapt CNNs designated for high-level vision tasks to handle pixel-level predictions. First, CNNs do not have a mechanism to explicitly model contextual dependencies among image units. Second, the convolutional filters and pooling operations result in reduced feature maps and hence produce coarse outputs when upsampled to the original resolution. These two aspects render CNNs limited ability to delineate object details, which often result in inconsistent predictions. In this paper, we propose a recurrent neural network to alleviate this issue. Specifically, a row convolutional long short-term memory (RC-LSTM) network is introduced to model contextual dependencies of local image features. This recurrent network can be integrated with CNNs, giving rise to an end-to-end trainable network. The experimental results demonstrate that our model can learn context-aware features for optical flow estimation and achieve competitive accuracy with the state-of-the-art algorithms at a frame rate of 5 to 10 fps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 1097–1105 (2012)

    Google Scholar 

  3. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

    Google Scholar 

  4. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580–587 (2014)

    Google Scholar 

  5. Ouyang, W., Wang, X., Zeng, X., Qiu, S., Luo, P., Tian, Y., Li, H., Yang, S., Wang, Z., Loy, C.C., et al.: DeepID-Net: deformable deep convolutional neural networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2403–2412 (2015)

    Google Scholar 

  6. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)

    Google Scholar 

  7. Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., Torr, P.H.: Conditional random fields as recurrent neural networks. In: IEEE International Conference on Computer Vision (ICCV), pp. 1529–1537 (2015)

    Google Scholar 

  8. Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., van der Smagt, P., Cremers, D., Brox, T.: Flownet: Learning optical flow with convolutional networks. In: IEEE International Conference on Computer Vision (ICCV), pp. 2758–2766 (2015)

    Google Scholar 

  9. Teney, D., Hebert, M.: Learning to extract motion from videos in convolutional neural networks. arXiv preprint arXiv:1601.07532 (2016)

  10. Graves, A., Jaitly, N.: Towards end-to-end speech recognition with recurrent neural networks. In: International Conference on Machine Learning (ICML), pp. 1764–1772 (2014)

    Google Scholar 

  11. Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3128–3137 (2015)

    Google Scholar 

  12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  13. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning (ICML), pp. 1310–1318 (2013)

    Google Scholar 

  14. Horn, B.K., Schunck, B.G.: Determining optical flow. In: Technical Symposium East, pp. 319–331. International Society for Optics and Photonics (1981)

    Google Scholar 

  15. Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to stereo vision. In: International Joint Conference on Artificial Intelligence (IJCAI), vol. 81, pp. 674–679 (1981)

    Google Scholar 

  16. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24673-2_3

    Chapter  Google Scholar 

  17. Wedel, A., Cremers, D., Pock, T., Bischof, H.: Structure-and motion-adaptive regularization for high accuracy optic flow. In: IEEE International Conference on Computer Vision (ICCV), pp. 1663–1668 (2009)

    Google Scholar 

  18. Sun, D., Roth, S., Black, M.J.: A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vis. 106, 115–137 (2014)

    Article  Google Scholar 

  19. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 500–513 (2011)

    Article  Google Scholar 

  20. Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: Deepflow: Large displacement optical flow with deep matching. In: IEEE International Conference on Computer Vision (ICCV), pp. 1385–1392 (2013)

    Google Scholar 

  21. Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Epicflow: edge-preserving interpolation of correspondences for optical flow. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1164–1172 (2015)

    Google Scholar 

  22. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1915–1929 (2013)

    Article  Google Scholar 

  23. Shuai, B., Zuo, Z., Wang, G., Wang, B.: DAG-Recurrent neural networks for scene labeling. arXiv preprint arXiv:1509.00552 (2015)

  24. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: Advances in Neural Information Processing Systems (NIPS), pp. 2366–2374 (2014)

    Google Scholar 

  25. Liang, M., Hu, X.: Recurrent convolutional neural network for object recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3367–3375 (2015)

    Google Scholar 

  26. van den Oord, A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. In: International Conference on Machine Learning (ICML) (2016)

    Google Scholar 

  27. Visin, F., Kastner, K., Cho, K., Matteucci, M., Courville, A., Bengio, Y.: Renet: A recurrent neural network based alternative to convolutional networks. arXiv preprint arXiv:1505.00393 (2015)

  28. Graves, A., Schmidhuber, J.: Offline handwriting recognition with multidimensional recurrent neural networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 545–552 (2009)

    Google Scholar 

  29. Shuai, B., Zuo, Z., Wang, G.: Quaddirectional 2D-recurrent neural networks for image labeling. IEEE Sig. Process. Lett. 22, 1990–1994 (2015)

    Article  Google Scholar 

  30. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075 (2015)

  31. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.c.: Convolutional lstm network: A machine learning approach for precipitation nowcasting. Advances in Neural Information Processing Systems (NIPS) (2015)

    Google Scholar 

  32. Rolfe, J.T., LeCun, Y.: Discriminative recurrent sparse auto-encoders. arXiv preprint arXiv:1301.3775 (2013)

  33. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92, 1–31 (2011)

    Article  Google Scholar 

  34. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI vision benchmark suite. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  35. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33783-3_44

    Chapter  Google Scholar 

  36. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)

  37. Bao, L., Yang, Q., Jin, H.: Fast edge-preserving patchmatch for large displacement optical flow. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3534–3541 (2014)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada under the Grant RGP36726. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan GPU for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minlong Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lu, M., Deng, Z., Li, ZN. (2017). Learning Contextual Dependencies for Optical Flow with Recurrent Neural Networks. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10114. Springer, Cham. https://doi.org/10.1007/978-3-319-54190-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54190-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54189-1

  • Online ISBN: 978-3-319-54190-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics