Skip to main content

Visual Place Recognition Using Landmark Distribution Descriptors

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10114))

Included in the following conference series:

Abstract

Recent work by Sünderhauf et al. [1] demonstrated improved visual place recognition using proposal regions coupled with features from convolutional neural networks (CNN) to match landmarks between views. In this work we extend the approach by introducing descriptors built from landmark features which also encode the spatial distribution of the landmarks within a view. Matching descriptors then enforces consistency of the relative positions of landmarks between views. This has a significant impact on performance. For example, in experiments on 10 image-pair datasets, each consisting of 200 urban locations with significant differences in viewing positions and conditions, we recorded average precision of around 70% (at 100% recall), compared with 58% obtained using whole image CNN features and 50% for the method in [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For clarity with respect to our experiments, we should note that we found that the similarity metric provided in [1] did not give good performance and so in the interests of fairness we used a modified version which gave significantly better performance. Specifically, we modified Eqs. (2) and (3) in [1] to be \(s_{ij} = 1 - (\frac{1}{2} (\frac{|w_{i} - w_{j}|}{max(w_{i},w_{j})} + \frac{|h_{i} - h_{j}|}{max(h_{i},h_{j})}))\) and \(S_{ab} = \frac{1}{n_{a} \cdot n_{b}} \sum _{ij} (d_{ij} \cdot s_{ij}))\), respectively.

References

  1. Sünderhauf, N., Shirazi, S., Jacobson, A., Dayoub, F., Pepperell, E., Upcroft, B., Milford, M.: Place recognition with convnet landmarks: viewpoint-robust, condition-robust, training-free. In: Proceedings of Robotics: Science and Systems, Rome, Italy (2015)

    Google Scholar 

  2. Lowry, S., Sunderhauf, N., Newman, P., Leonard, J., Cox, D., Corke, P., Milford, M.: Visual place recognition: a survey. IEEE Trans. Robot. 32, 1–19 (2015)

    Article  Google Scholar 

  3. Sattler, T., Leibe, B., Kobbelt, L.: Improving image-based localization by active correspondence search. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 752–765. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33718-5_54

    Chapter  Google Scholar 

  4. Gronat, P., Obozinski, G., Sivic, J., Pajdla, T.: Learning and calibrating per-location classifiers for visual place recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 907–914 (2013)

    Google Scholar 

  5. Torii, A., Arandjelovic, R., Sivic, J., Okutomi, M., Pajdla, T.: 24/7 place recognition by view synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1808–1817 (2015)

    Google Scholar 

  6. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  7. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42, 145–175 (2001)

    Article  MATH  Google Scholar 

  8. Cummins, M., Newman, P.: Fab-map: probabilistic localization and mapping in the space of appearance. Int. J. Rob. Res. 27, 647–665 (2008)

    Article  Google Scholar 

  9. Cummins, M., Newman, P.: Appearance-only SLAM at large scale with FAB-MAP 2.0. Int. J. Robot. Res. (2010)

    Google Scholar 

  10. McManus, C., Upcroft, B., Newman, P.: Scene signatures: localised and point-less features for localisation. In: Proceedings of Robotics Science and Systems (RSS), Berkeley, CA, USA (2014)

    Google Scholar 

  11. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10602-1_26

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012)

    Google Scholar 

  13. Bingham, E., Mannila, H.: Random projection in dimensionality reduction: applications to image and text data. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2001, pp. 245–250. ACM, New York (2001)

    Google Scholar 

  14. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: Proceedings of the British Machine Vision Conference (BMVC) (2014)

    Google Scholar 

  15. Vedaldi, A., Lenc, K.: Matconvnet - convolutional neural networks for matlab. In: Proceeding of the ACM International Conference on Multimedia (2015)

    Google Scholar 

  16. Achlioptas, D.: Database-friendly random projections. In: Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2001, pp. 274–281. ACM, New York (2001)

    Google Scholar 

  17. Sünderhauf, N., Shirazi, S., Dayoub, F., Upcroft, B., Milford, M.: On the performance of convnet features for place recognition. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2015)

    Google Scholar 

  18. Vedaldi, A., Fulkerson, B.: VLFeat - an open and portable library of computer vision algorithms. In: ACM International Conference on Multimedia (2010)

    Google Scholar 

  19. Kong, H., Audibert, J.Y., Ponce, J.: Vanishing point detection for road detection. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 96–103. IEEE (2009)

    Google Scholar 

  20. Frampton, R., Calway, A.: Place recognition from disparate views. In: Proceedings of the British Machine Vision Conference (BMVC) (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilailuck Panphattarasap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Panphattarasap, P., Calway, A. (2017). Visual Place Recognition Using Landmark Distribution Descriptors. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10114. Springer, Cham. https://doi.org/10.1007/978-3-319-54190-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54190-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54189-1

  • Online ISBN: 978-3-319-54190-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics