Skip to main content

Deep Depth Super-Resolution: Learning Depth Super-Resolution Using Deep Convolutional Neural Network

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10114))

Included in the following conference series:

Abstract

Depth image super-resolution is an extremely challenging task due to the information loss in sub-sampling. Deep convolutional neural network has been widely applied to color image super-resolution. Quite surprisingly, this success has not been matched to depth super-resolution. This is mainly due to the inherent difference between color and depth images. In this paper, we bridge up the gap and extend the success of deep convolutional neural network to depth super-resolution. The proposed deep depth super-resolution method learns the mapping from a low-resolution depth image to a high-resolution one in an end-to-end style. Furthermore, to better regularize the learned depth map, we propose to exploit the depth field statistics and the local correlation between depth image and color image. These priors are integrated in an energy minimization formulation, where the deep neural network learns the unary term, the depth field statistics works as global model constraint and the color-depth correlation is utilized to enforce the local structure in depth image. Extensive experiments on various depth super-resolution benchmark datasets show that our method outperforms the state-of-the-art depth image super-resolution methods with a margin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A., Cook, M., Moore, R.: Real-time human pose recognition in parts from single depth images. Commun. ACM 56, 116–124 (2013)

    Article  Google Scholar 

  2. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., et al.: Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, pp. 559–568 (2011)

    Google Scholar 

  3. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33783-3_44

    Chapter  Google Scholar 

  4. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). doi:10.1007/978-3-319-10593-2_13

    Google Scholar 

  5. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  6. Kim, J., Kwon Lee, J., Mu Lee, K.: Deeply-recursive convolutional network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1637–1645 (2016)

    Google Scholar 

  7. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comput. Graph. Appl. 22, 56–65 (2002)

    Article  Google Scholar 

  8. Mac Aodha, O., Campbell, N.D.F., Nair, A., Brostow, G.J.: Patch based synthesis for single depth image super-resolution. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 71–84. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33712-3_6

    Chapter  Google Scholar 

  9. Ferstl, D., Ruther, M., Bischof, H.: Variational depth superresolution using example-based edge representations. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 513–521 (2015)

    Google Scholar 

  10. Xie, J., Feris, R.S., Sun, M.T.: Edge-guided single depth image super resolution. IEEE Trans. Image Proc. 25, 428–438 (2016)

    Article  MathSciNet  Google Scholar 

  11. Park, J., Kim, H., Tai, Y.W., Brown, M.S., Kweon, I.: High quality depth map upsampling for 3d-tof cameras. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1623–1630 (2011)

    Google Scholar 

  12. Yang, J., Ye, X., Li, K., Hou, C.: Depth recovery using an adaptive color-guided auto-regressive model. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 158–171. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33715-4_12

    Chapter  Google Scholar 

  13. Ferstl, D., Reinbacher, C., Ranftl, R., Rüther, M., Bischof, H.: Image guided depth upsampling using anisotropic total generalized variation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 993–1000 (2013)

    Google Scholar 

  14. Matsuo, K., Aoki, Y.: Depth image enhancement using local tangent plane approximations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3574–3583 (2015)

    Google Scholar 

  15. Lu, J., Forsyth, D.: Sparse depth super resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2245–2253 (2015)

    Google Scholar 

  16. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Proc. 19, 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  17. Wang, S., Zhang, L., Liang, Y., Pan, Q.: Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2216–2223 (2012)

    Google Scholar 

  18. Kim, K.I., Kwon, Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1127–1133 (2010)

    Article  Google Scholar 

  19. Yang, M.C., Wang, Y.C.F.: A self-learning approach to single image super-resolution. IEEE Trans. Multimedia 15, 498–508 (2013)

    Article  Google Scholar 

  20. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. Graph. 23, 689–694 (2004)

    Article  Google Scholar 

  21. Li, B., Shen, C., Dai, Y., van den Hengel, A., He, M.: Depth and surface normal estimation from monocular images using regression on deep features and hierarchical CRFs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1119–1127 (2015)

    Google Scholar 

  22. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD Images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  23. Diebel, J., Thrun, S.: An application of markov random fields to range sensing. In: Proceedings of the Advances in Neural Information Processing Systems, vol. 5, pp. 291–298 (2005)

    Google Scholar 

  24. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3869–3872 (2008)

    Google Scholar 

  25. Ajanthan, T., Hartley, R., Salzmann, M., Li, H.: Iteratively reweighted graph cut for multi-label MRFs with non-convex priors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5144–5152 (2015)

    Google Scholar 

  26. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comp. Vis. 47, 7–42 (2002)

    Article  MATH  Google Scholar 

  27. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 195–202 (2003)

    Google Scholar 

  28. Scharstein, D., Pal, C.: Learning conditional random fields for stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  29. Hirschmüller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  30. Handa, A., Whelan, T., McDonald, J., Davison, A.: A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM. In: IEEE International Conference on Robotics and Automation, pp. 1524–1531 (2014)

    Google Scholar 

  31. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  32. Timofte, R., Smet, V., Gool, L.: Anchored neighborhood regression for fast example-based super-resolution. In: Proceedings of the IEEE Conference on Computer Vision, pp. 1920–1927 (2013)

    Google Scholar 

  33. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5197–5206 (2015)

    Google Scholar 

  34. Hornácek, M., Rhemann, C., Gelautz, M., Rother, C.: Depth super resolution by rigid body self-similarity in 3d. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1123–1130 (2013)

    Google Scholar 

  35. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: Proceedings of the British Machine Vision Conference (2012)

    Google Scholar 

Download references

Acknowledgement

This work is supported by 863 program of China (No. 2015-AA016405), NSF of China (Nos. 61672326, 61420106007), ARC Grants (Nos. DE140100180, LP100100588, DP120103896) and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchao Dai .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 640 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Song, X., Dai, Y., Qin, X. (2017). Deep Depth Super-Resolution: Learning Depth Super-Resolution Using Deep Convolutional Neural Network. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10114. Springer, Cham. https://doi.org/10.1007/978-3-319-54190-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54190-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54189-1

  • Online ISBN: 978-3-319-54190-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics