Ultra-Shallow DoF Imaging Using Faced Paraboloidal Mirrors

  • Ryoichiro NishiEmail author
  • Takahito Aoto
  • Norihiko Kawai
  • Tomokazu Sato
  • Yasuhiro Mukaigawa
  • Naokazu Yokoya
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10113)


We propose a new imaging method that achieves an ultra-shallow depth of field (DoF) to clearly visualize a particular depth in a 3-D scene. The key optical device consists of a pair of faced paraboloidal mirrors with holes around their vertexes. In the device, a lens-less image sensor is set at one side of their holes and an object is set at the opposite side. The characteristic of the device is that the shape of the point spread function varies depending on both the positions of the target 3-D point and the image sensor. By leveraging this characteristic, we reconstruct a clear image for a particular depth by solving a linear system involving position-dependent point spread functions. In experiments, we demonstrate the effectiveness of the proposed method using both simulation and an actually developed prototype imaging system.


Target Object Point Spread Function Numerical Aperture Image Sensor Point Light Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by JSPS Grant-in-Aid for Research Activity Start-up Grant Number 16H06982.


  1. 1.
    Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings SIGGRAPH, pp. 31–42 (1996)Google Scholar
  2. 2.
    Vaish, V., Wilburn, B., Joshi, N., Levoy, M.: Using plane + parallax for calibrating dense camera arrays. In: Proceedings CVPR, vol. 1, pp. I-2–I-9 (2004)Google Scholar
  3. 3.
    Wilburn, B., Joshi, N., Vaish, V., Talvala, E.V., Antunez, E., Barth, A., Adams, A., Horowitz, M., Levoy, M.: High performance imaging using large camera array. ACM Trans. Graph. 24(3), 765–776 (2005)CrossRefGoogle Scholar
  4. 4.
    Adelson, E.H., Wang, J.Y.A.: Single lens stereo with a plenoptic camera. IEEE Trans. PAMI 14(2), 99–106 (1992)CrossRefGoogle Scholar
  5. 5.
    Ng, R., Levoy, M., Bredif, M., Duval, G., Horowitz, M., Hanrahan, P.: Light field photography with a hand-held plenoptic camera. Proc. CTSR 2(11), 1–11 (2005)Google Scholar
  6. 6.
    Cossairt, O., Nayar, S., Ramamoorthi, R.: Light field transfer: global illumination between real and synthetic objects. ACM Trans. Graph. 27(3), 57:1–57:6 (2008)CrossRefGoogle Scholar
  7. 7.
    Veeraraghavan, A., Raskar, R., Agrawal, A., Mohan, A., Tumblin, J.: Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing. ACM Trans. Graph. 26(3), 69–76 (2007)CrossRefGoogle Scholar
  8. 8.
    Liang, C., Lin, T., Wong, B., Liu, C., Chen, H.H.: Programmable aperture photography: multiplexed light field acquisition. ACM Trans. Graph. 27(5), 55-1–55-10 (2008)Google Scholar
  9. 9.
    Unger, J., Wenger, A., Hawkins, T., Gardner, A., Debevec, P.: Capturing and rendering with incident light fields. In: Proceedings EGSR, pp. 141–149 (2003)Google Scholar
  10. 10.
    Lanman, D., Crispell, D., Wachs, M., Taubin, G.: Spherical catadioptric arrays: construction, multi-view geometry, and calibration. In: Proceedings 3DPVT, pp. 81–88 (2006)Google Scholar
  11. 11.
    Levoy, M., Chen, B., Vaish, V., Horowitz, M., McDowall, I., Bolas, M.: Synthetic aperture confocal imaging. In: Proceedings SIGGRAPH, pp. 825–834 (2004)Google Scholar
  12. 12.
    Tagawa, S., Mukaigawa, Y., Kim, J., Raskar, R., Matsushita, Y., Yagi, Y.: Hemispherical confocal imaging. IPSJ Trans. CVA 3, 222–235 (2011)Google Scholar
  13. 13.
    Minsky, M.: Microscopy apparatus. US Patent 3013467 (1961)Google Scholar
  14. 14.
    White, J., Amos, W.B.: An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. JCB 501(1), 41–48 (1987)CrossRefGoogle Scholar
  15. 15.
    Tanaami, T., Otsuki, S., Tomosada, N., Kosugi, Y., Shimizu, M., Ishida, H.: High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks. Appl. Opt. 41(22), 4704–4708 (2002)CrossRefGoogle Scholar
  16. 16.
    Adhya, S., Noé, J.: A complete ray-trace analysis of the ‘Mirage’ toy. In: Proceedinigs SPIE ETOP, pp. 966518-1–966518-7 (2007)Google Scholar
  17. 17.
    Butler, A., Hilliges, O., Izadi, S., Hodges, S., Molyneaux, D., Kim, D., Kong, D.: Vermeer: direct interaction with a 360\(^\circ \) viewable 3D display. In: Proceedings UIST, pp 569–576 (2011)Google Scholar
  18. 18.
    Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite-element approximations. Comput. Math. Appl. 2, 17–40 (1976)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ryoichiro Nishi
    • 1
    Email author
  • Takahito Aoto
    • 1
  • Norihiko Kawai
    • 1
  • Tomokazu Sato
    • 1
  • Yasuhiro Mukaigawa
    • 1
  • Naokazu Yokoya
    • 1
  1. 1.Graduate School of Information ScienceNara Institute of Science and TechnologyIkomaJapan

Personalised recommendations