Advertisement

Random Forest with Suppressed Leaves for Hough Voting

  • Hui LiangEmail author
  • Junhui Hou
  • Junsong Yuan
  • Daniel Thalmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10113)

Abstract

Random forest based Hough-voting techniques have been widely used in a variety of computer vision problems. As an ensemble learning method, the voting weights of leaf nodes in random forest play critical role to generate reliable estimation result. We propose to improve Hough-voting with random forest via simultaneously optimizing the weights of leaf votes and pruning unreliable leaf nodes in the forest. After constructing the random forest, the weight assignment problem at each tree is formulated as a L0-regularized optimization problem, where unreliable leaf nodes with zero voting weights are suppressed and trees are pruned to ignore sub-trees that contain only suppressed leaves. We apply our proposed techniques to several regression and classification problems such as hand gesture recognition, head pose estimation and articulated pose estimation. The experimental results demonstrate that by suppressing unreliable leaf nodes, it not only improves prediction accuracy, but also reduces both prediction time cost and model complexity of the random forest.

Keywords

Random Forest Local Feature Leaf Node Training Image Euler Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work is supported in part by Singapore Ministry of Education Academic Research Fund Tier 2 MOE2015-T2-2-114 and Tier 1 RG27/14.

References

  1. 1.
    Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves in pictures. Commun. ACM 15, 11–15 (1972)CrossRefzbMATHGoogle Scholar
  2. 2.
    Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recogn. 13, 111–122 (1981)CrossRefzbMATHGoogle Scholar
  3. 3.
    Leibe, B., Leonardis, A., Schiele, B.: Combined object categorization and segmentation with an implicit shape model. In: ECCV Workshop on Statistical Learning in Computer Vision, pp. 17–32 (2004)Google Scholar
  4. 4.
    Gall, J., Lempitsky, V.: Class-specific hough forests for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1022–1029. IEEE (2009)Google Scholar
  5. 5.
    Keskin, C., Kıraç, F., Kara, Y.E., Akarun, L.: Hand pose estimation and hand shape classification using multi-layered randomized decision forests. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 852–863. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33783-3_61 CrossRefGoogle Scholar
  6. 6.
    Fanelli, G., Dantone, M., Gall, J., Fossati, A., Van Gool, L.: Random forests for real time 3D face analysis. Int. J. Comput. Vis. 101, 437–458 (2013)CrossRefGoogle Scholar
  7. 7.
    Yang, H., Patras, I.: Sieving regression forest votes for facial feature detection in the wild. In: IEEE International Conference on Computer Vision, pp. 1936–1943. IEEE (2013)Google Scholar
  8. 8.
    Xu, C., Cheng, L.: Efficient hand pose estimation from a single depth image. In: IEEE International Conference on Computer Vision, pp. 3456–3462. IEEE (2013)Google Scholar
  9. 9.
    Sirmaçek, B., Ünsalan, C.: Road network extraction using edge detection and spatial voting. In: International Conference on Pattern Recognition, pp. 3113–3116. IEEE (2010)Google Scholar
  10. 10.
    Girshick, R., Shotton, J., Kohli, P., Criminisi, A., Fitzgibbon, A.: Efficient regression of general-activity human poses from depth images. In: IEEE International Conference on Computer Vision, pp. 415–422. IEEE (2011)Google Scholar
  11. 11.
    Maji, S., Malik, J.: Object detection using a max-margin hough transform. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1038–1045. IEEE (2009)Google Scholar
  12. 12.
    Wohlhart, P., Schulter, S., Köstinger, M., Roth, P.M., Bischof, H.: Discriminative hough forests for object detection. In: British Machine Vision Conference, pp. 1–11(2012)Google Scholar
  13. 13.
    Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Lin, Z., Chen, M., Ma, Y.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055 (2010)
  15. 15.
    Ren, Z., Yuan, J., Meng, J., Zhang, Z.: Robust part-based hand gesture recognition using kinect sensor. IEEE Trans. Multimedia 15, 1110–1120 (2013)CrossRefGoogle Scholar
  16. 16.
    Gourier, N., Hall, D., Crowley, J.L.: Estimating face orientation from robust detection of salient facial features. In: ICPR International Workshop on Visual Observation of Deictic Gestures, Citeseer (2004)Google Scholar
  17. 17.
    Qian, C., Sun, X., Wei, Y., Tang, X., Sun, J.: Realtime and robust hand tracking from depth. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1106–1113. IEEE (2014)Google Scholar
  18. 18.
    Schulter, S., Leistner, C., Wohlhart, P., Roth, P.M., Bischof, H.: Alternating regression forests for object detection and pose estimation. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 417–424. IEEE (2013)Google Scholar
  19. 19.
    Rota Bulo, S., Kontschieder, P.: Neural decision forests for semantic image labelling. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 81–88. IEEE (2014)Google Scholar
  20. 20.
    Hara, K., Chellappa, R.: Growing regression forests by classification: applications to object pose estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 552–567. Springer, Cham (2014). doi: 10.1007/978-3-319-10605-2_36 Google Scholar
  21. 21.
    Ren, S., Cao, X., Wei, Y., Sun, J.: Global refinement of random forest. In: The IEEE Conference on Computer Vision and Pattern Recognition (2015)Google Scholar
  22. 22.
    Gould, N., Toint, P.L.: Preprocessing for quadratic programming. Math. Program. Series B 100, 95–132 (2004)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Fisher, N.I.: Statistical Analysis of Circular Data. Cambridge University Press, Cambridge (2000)Google Scholar
  24. 24.
    Herdtweck, C., Curio, C.: Monocular car viewpoint estimation with circular regression forests. In: IEEE Intelligent Vehicles Symposium (2013)Google Scholar
  25. 25.
    Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. PAMI 24, 603–619 (2002)CrossRefGoogle Scholar
  26. 26.
    Zhang, C., Yang, X., Tian, Y.: Histogram of 3D facets: a characteristic descriptor for hand gesture recognition. In: IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, pp. 1–8. IEEE (2013)Google Scholar
  27. 27.
    Shotton, J., Girshick, R., Fitzgibbon, A., Sharp, T., Cook, M., Finocchio, M., Moore, R., Kohli, P., Criminisi, A., Kipman, A., et al.: Efficient human pose estimation from single depth images. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2821–2840 (2013)CrossRefGoogle Scholar
  28. 28.
    Liang, H., Yuan, J., Thalmann, D.: 3D fingertip and palm tracking in depth image sequences. In: Proceedings of the 20th ACM International Conference on Multimedia, pp. 785–788. ACM (2012)Google Scholar
  29. 29.
    Zhang, C., Tian, Y.: Histogram of 3D facets: a depth descriptor for human action and hand gesture recognition. Comput. Vis. Image Underst. 139, 29–39 (2015)CrossRefGoogle Scholar
  30. 30.
    Lai, Z., Yao, Z., Wang, C., Liang, H., Chen, H., Xia, W.: Fingertips detection and hand gesture recognition based on discrete curve evolution with a kinect sensor. In: Visual Communications and Image Processing (2016)Google Scholar
  31. 31.
    Haj, M.A., Gonzalez, J., Davis, L.S.: On partial least squares in head pose estimation: How to simultaneously deal with misalignment. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2602–2609. IEEE (2012)Google Scholar
  32. 32.
    Fenzi, M., Leal-Taixé, L., Rosenhahn, B., Ostermann, J.: Class generative models based on feature regression for pose estimation of object categories. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 755–762 (2013)Google Scholar
  33. 33.
    Sun, X., Wei, Y., Liang, S., Tang, X., Sun, J.: Cascaded hand pose regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 824–832 (2015)Google Scholar
  34. 34.
    Tang, D., Chang, H.J., Tejani, A., Kim, T.K.: Latent regression forest: structured estimation of 3D articulated hand posture. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3786–3793. IEEE (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hui Liang
    • 1
    Email author
  • Junhui Hou
    • 1
  • Junsong Yuan
    • 1
  • Daniel Thalmann
    • 2
  1. 1.School of Electrical and Electronics EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Institute for Media InnovationNanyang Technological UniversitySingaporeSingapore

Personalised recommendations