Advertisement

Removing Shadows from Images of Documents

  • Steve BakoEmail author
  • Soheil Darabi
  • Eli Shechtman
  • Jue Wang
  • Kalyan Sunkavalli
  • Pradeep Sen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10113)

Abstract

In this work, we automatically detect and remove distracting shadows from photographs of documents and other text-based items. Documents typically have a constant colored background; based on this observation, we propose a technique to estimate background and text color in local image blocks. We match these local background color estimates to a global reference to generate a shadow map. Correcting the image with this shadow map produces the final unshadowed output. We demonstrate that our algorithm is robust and produces high-quality results, qualitatively and quantitatively, in both controlled and real-world settings containing large regions of significant shadow.

Keywords

Document Image Background Color Shadow Region Binarization Method Ground Truth Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work was supported in part by NSF awards IIS-1321168 and RI-1619376 and by a gift from Adobe. We thank Daniel Oliveira for providing code to run comparisons. The images in Figs. 3, 5 and 6 were used through the Creative Commons 2.0 License without modification. The title and photographers from Flickr (unless otherwise noted) in order of appearance are: Open Textbook Summit 2014 by BCcampus_News, Army in the Shadows, Army in the Light by Cuzco84, That Please by Kimli, Medieval text in the Christ Church Archive by -JvL-, Untitled by Jacek.NL, Cartmel Priory by Rosscophoto, Transfer Damaged Textbook by Enokson, Untitled by Colin Manuel, find by PHIL, Declaration of Independence photo by taliesin at Morguefile.com (Morguefile License), and Momofuku - Menu w/ Shadow puppets by Lawrence. Please see supplementary materials for links to the images and license.

Supplementary material

416261_1_En_12_MOESM1_ESM.pdf (10.1 mb)
Supplementary material 1 (pdf 10315 KB)

References

  1. 1.
    Guo, R., Dai, Q., Hoiem, D.: Paired regions for shadow detection and removal. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2956–2967 (2013)CrossRefGoogle Scholar
  2. 2.
    Gong, H., Cosker, D.: Interactive shadow removal and ground truth for variable scene categories. In: Proceedings of the British Machine Vision Conference. BMVA Press (2014)Google Scholar
  3. 3.
    Gryka, M., Terry, M., Brostow, G.J.: Learning to remove soft shadows. ACM Trans. Graph. 34(5), 153:1–153:15 (2015)CrossRefGoogle Scholar
  4. 4.
    Zhao, Q., Tan, P., Dai, Q., Shen, L., Wu, E., Lin, S.: A closed-form solution to retinex with non-local texture constraints. PAMI 34(7), 1437–1444 (2012)CrossRefGoogle Scholar
  5. 5.
    Yang, Q., Tan, K.H., Ahuja, N.: Shadow removal using bilateral filtering. IEEE Trans. Image Process. 21, 4361–4368 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bell, S., Bala, K., Snavely, N.: Intrinsic images in the wild. ACM Trans. Graph. (SIGGRAPH) 33(4), 159:1–159:12 (2014)CrossRefGoogle Scholar
  7. 7.
    Barron, J.T., Malik, J.: Shape, illumination, and reflectance from shading. TPAMI 37(8), 1670–1687 (2015)CrossRefGoogle Scholar
  8. 8.
    Zhou, T., Krahenbuhl, P., Efros, A.A.: Learning data-driven reflectance priors for intrinsic image decomposition, pp. 3469–3477 (2015)Google Scholar
  9. 9.
    Sunkavalli, K., Matusik, W., Pfister, H., Rusinkiewicz, S.: Factored time-lapse video. ACM Trans. Graph. 26 (2007). Proceedings of the SIGGRAPHGoogle Scholar
  10. 10.
    Abrams, A., Hawley, C., Pless, R.: Heiometric stereo: shape from sun position. In: European Conference on Computer Vision (ECCV) (2012)Google Scholar
  11. 11.
    Brown, M.S., Tsoi, Y.C.: Geometric and shading correction for images of printed materials using boundary. Trans. Img. Proc. 15, 1544–1554 (2006)CrossRefGoogle Scholar
  12. 12.
    Zhang, L., Yip, A.M., Tan, C.L.: Removing shading distortions in camera-based document images using inpainting and surface fitting with radial basis functions. In: 9th International Conference on Document Analysis and Recognition, ICDAR 2007, 23–26 September, Curitiba, Paraná, Brazil, pp. 984–988 (2007)Google Scholar
  13. 13.
    Oliveira, D.M., Lins, R.D., França Pereira e Silva, G.: Shading removal of illustrated documents. In: Kamel, M., Campilho, A. (eds.) ICIAR 2013. LNCS, vol. 7950, pp. 308–317. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39094-4_35 CrossRefGoogle Scholar
  14. 14.
    Acrobat, A.: Enhance document photos captured using a mobile camera (2016). https://helpx.adobe.com/acrobat/using/enhance-camera-images.html
  15. 15.
    Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11, 23–27 (1975)Google Scholar
  16. 16.
    Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Patt. Recogn. 26, 1277–1294 (1993)CrossRefGoogle Scholar
  17. 17.
    Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Patt. Recogn. 33, 225–236 (2000)CrossRefGoogle Scholar
  18. 18.
    Pilu, M., Pollard, S.: A light-weight text image processing method for handheld embedded cameras (2002)Google Scholar
  19. 19.
    Shi, Z., Govindaraju, V.: Historical document image enhancement using background light intensity normalization. In: 2004 Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 1, pp. 473–476. IEEE (2004)Google Scholar
  20. 20.
    Gatos, B., Pratikakis, I., Perantonis, S.J.: Adaptive degraded document image binarization. Patt. Recogn. 39, 317–327 (2006)CrossRefzbMATHGoogle Scholar
  21. 21.
    Wagdy, M., Faye, I., Rohaya, D.: Fast and efficient document image clean up and binarization based on retinex theory. In: 2013 IEEE 9th International Colloquium on Signal Processing and its Applications (CSPA), pp. 58–62. IEEE (2013)Google Scholar
  22. 22.
    Su, B., Lu, S., Tan, C.L.: Robust document image binarization technique for degraded document images. IEEE Trans. Image Process. 22, 1408–1417 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Pratikakis, I., Gatos, B., Ntirogiannis, K.: ICDAR 2013 document image binarization contest (DIBCO 2013). In: 2013 12th International Conference on Document Analysis and Recognition (ICDAR), pp. 1471–1476. IEEE (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Steve Bako
    • 1
    Email author
  • Soheil Darabi
    • 2
  • Eli Shechtman
    • 2
  • Jue Wang
    • 2
  • Kalyan Sunkavalli
    • 2
  • Pradeep Sen
    • 1
  1. 1.University of California, Santa BarbaraSanta BarbaraUSA
  2. 2.Adobe ResearchSeattleUSA

Personalised recommendations