Advertisement

A Fast Blind Spatially-Varying Motion Deblurring Algorithm with Camera Poses Estimation

  • Yuquan XuEmail author
  • Seiichi Mita
  • Silong Peng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10113)

Abstract

Most existing non-uniform deblurring algorithms model the blurry image as a weighted summation of several sharp images which are warped by one latent image with different homographies. These algorithms usually suffer from high computational cost due to the huge number of homographies to be considered. In order to solve this problem, we introduce a novel single image deblurring algorithm to remove the spatially-varying blur. Since the real motion blur kernel is very sparse, in this paper we first estimate a feasible active set of homographies which may hold large weights in the blur kernel and then compute the corresponding weights on these homographies to reconstruct the blur kernel. Since the size of the active set is quite small, the deblurring algorithm will become much faster. Experiment results show that the proposed algorithm can effectively and efficiently remove the non-uniform blur caused by camera shake.

Keywords

Point Spread Function Latent Image Motion Blur Alternate Direction Method Blur Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. ACM Trans. Graph. (TOG) 25, 787–794 (2006). ACMGoogle Scholar
  2. 2.
    Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. (TOG) 27 (2008). Article no. 73. ACMGoogle Scholar
  3. 3.
    Cho, S., Lee, S.: Fast motion deblurring. ACM Trans. Graph. (TOG) 28 (2009). Article no. 145. ACMGoogle Scholar
  4. 4.
    Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15549-9_12 CrossRefGoogle Scholar
  5. 5.
    Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 233–240. IEEE (2011)Google Scholar
  6. 6.
    Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2657–2664. IEEE (2011)Google Scholar
  7. 7.
    Xu, L., Zheng, S., Jia, J.: Unnatural LO sparse representation for natural image deblurring. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2013)Google Scholar
  8. 8.
    Whyte, O., Sivic, J., Zisserman, A., Ponce, J.: Non-uniform deblurring for shaken images. Int. J. Comput. Vis. 98, 168–186 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Tai, Y.W., Tan, P., Brown, M.S.: Richardson-Lucy deblurring for scenes under a projective motion path. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1603–1618 (2011)CrossRefGoogle Scholar
  10. 10.
    Gupta, A., Joshi, N., Lawrence Zitnick, C., Cohen, M., Curless, B.: Single image deblurring using motion density functions. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 171–184. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15549-9_13 CrossRefGoogle Scholar
  11. 11.
    Hirsch, M., Schuler, C.J., Harmeling, S., Scholkopf, B.: Fast removal of non-uniform camera shake. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 463–470. IEEE (2011)Google Scholar
  12. 12.
    Hu, Z., Yang, M.H.: Fast non-uniform deblurring using constrained camera pose subspace. In: BMVC, pp. 1–11 (2012)Google Scholar
  13. 13.
    Cho, S., Cho, H., Tai, Y.W., Lee, S.: Registration based non-uniform motion deblurring. Comput. Graph. Forum 31, 2183–2192 (2012). Wiley Online LibraryGoogle Scholar
  14. 14.
    Babacan, S.D., Molina, R., Do, M.N., Katsaggelos, A.K.: Bayesian blind deconvolution with general sparse image priors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 341–355. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33783-3_25 CrossRefGoogle Scholar
  15. 15.
    Ben-Ezra, M., Nayar, S.K.: Motion deblurring using hybrid imaging. In: Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, p. I-657. IEEE (2003)Google Scholar
  16. 16.
    Yuan, L., Sun, J., Quan, L., Shum, H.Y.: Image deblurring with blurred/noisy image pairs. ACM Trans. Graph. (TOG) 26(3) (2007). Article no. 1. ACMGoogle Scholar
  17. 17.
    Lasang, P., Ong, C.P., Shen, S.M.: CFA-based motion blur removal using long/short exposure pairs. IEEE Trans. Consum. Electron. 56, 332–338 (2010)CrossRefGoogle Scholar
  18. 18.
    Jia, J.: Single image motion deblurring using transparency. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)Google Scholar
  19. 19.
    Šorel, M., Šroubek, F., Flusser, J.: Recent advances in space-variant deblurring and image stabilization. In: Byrnes J. (ed.) Unexploded Ordnance Detection and Mitigation. NATO Science for Peace and Security Series B: Physics and Biophysics, pp. 259–272. Springer, Dordrecht (2009)Google Scholar
  20. 20.
    Harmeling, S., Hirsch, M., Schölkopf, B.: Space-variant single-image blind deconvolution for removing camera shake. In: NIPS, pp. 829–837 (2010)Google Scholar
  21. 21.
    Joshi, N., Kang, S.B., Zitnick, C.L., Szeliski, R.: Image deblurring using inertial measurement sensors. ACM Trans. Graph. (TOG) 29 (2010). Article no. 30Google Scholar
  22. 22.
    Dai, S., Wu, Y.: Motion from blur. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)Google Scholar
  23. 23.
    Zhang, H., Wipf, D.: Non-uniform camera shake removal using a spatially-adaptive sparse penalty. In: Advances in Neural Information Processing Systems, pp. 1556–1564 (2013)Google Scholar
  24. 24.
    Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph. (TOG) 26 (2007). Article no. 70Google Scholar
  25. 25.
    Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-laplacian priors. In: Advances in Neural Information Processing Systems, pp. 1033–1041 (2009)Google Scholar
  26. 26.
    Köhler, R., Hirsch, M., Mohler, B., Schölkopf, B., Harmeling, S.: Recording and playback of camera shake: benchmarking blind deconvolution with a real-world database. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 27–40. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33786-4_3 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Research Center for Smart Vehicles, Toyota Technological InstituteNagoyaJapan
  2. 2.Institute of Automation, Chinese Academy of SciencesBeijingChina

Personalised recommendations