Skip to main content

Supervoxel-Based Segmentation of 3D Volumetric Images

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10111))

Included in the following conference series:

Abstract

While computer vision has made noticeable advances in the state of the art for 2D image segmentation, the same cannot be said for 3D volumetric datasets. In this work, we present a scalable approach to volumetric segmentation. The methodology, driven by supervoxel extraction, combines local and global gradient-based features together to first produce a low level supervoxel graph. Subsequently, an agglomerative approach is used to group supervoxel structures into a segmentation hierarchy with explicitly imposed containment of lower level supervoxels in higher level supervoxels. Comparisons are conducted against state of the art 3D segmentation algorithms. The considered applications are 3D spatial and 2D spatiotemporal segmentation scenarios.

This work is partially supported by AFOSR under FA9550-15-1-0047.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 898–916 (2011)

    Article  Google Scholar 

  2. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  3. Catanzaro, B., Su, B.Y., Sundaram, N., Lee, Y., Murphy, M., Keutzer, K.: Efficient, high-quality image contour detection. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2381–2388. IEEE (2009)

    Google Scholar 

  4. Taylor, C.: Towards fast and accurate segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1916–1922 (2013)

    Google Scholar 

  5. Fowlkes, C., Martin, D., Malik, J.: Learning affinity functions for image segmentation: combining patch-based and gradient-based approaches. In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. II–54. IEEE (2003)

    Google Scholar 

  6. Grundmann, M., Kwatra, V., Han, M., Essa, I.: Efficient hierarchical graph-based video segmentation. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2141–2148. IEEE (2010)

    Google Scholar 

  7. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vision 59, 167–181 (2004)

    Article  Google Scholar 

  8. Sharon, E., Brandt, A., Basri, R.: Fast multiscale image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 70–77. IEEE (2000)

    Google Scholar 

  9. Sharon, E., Galun, M., Sharon, D., Basri, R., Brandt, A.: Hierarchy and adaptivity in segmenting visual scenes. Nature 442, 810–813 (2006)

    Article  Google Scholar 

  10. Galasso, F., Keuper, M., Brox, T., Schiele, B.: Spectral graph reduction for efficient image and streaming video segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 49–56 (2014)

    Google Scholar 

  11. Pohle, R., Toennies, K.D.: Segmentation of medical images using adaptive region growing. In: International Society for Optics and Photonics on Medical Imaging 2001, pp. 1337–1346 (2001)

    Google Scholar 

  12. Carballido-Gamio, J., Belongie, S.J., Majumdar, S.: Normalized cuts in 3-D for spinal MRI segmentation. IEEE Trans. Med. Imaging 23, 36–44 (2004)

    Article  Google Scholar 

  13. Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., Van Der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., et al.: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002)

    Article  Google Scholar 

  14. Deng, Y., Rangarajan, A., Vemuri, B.C.: Supervised learning for brain MR segmentation via fusion of partially labeled multiple atlases. In: IEEE International Symposium on Biomedical Imaging (ISBI) (2016)

    Google Scholar 

  15. Galasso, F., Cipolla, R., Schiele, B.: Video segmentation with superpixels. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 760–774. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37331-2_57

    Chapter  Google Scholar 

  16. Galasso, F., Nagaraja, N.S., Cardenas, T.J., Brox, T., Schiele, B.: A unified video segmentation benchmark: Annotation, metrics and analysis. In: IEEE International Conference on Computer Vision (2013)

    Google Scholar 

  17. Khoreva, A., Galasso, F., Hein, M., Schiele, B.: Classifier based graph construction for video segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 951–960. IEEE (2015)

    Google Scholar 

  18. Khoreva, A., Benenson, R., Galasso, F., Hein, M., Schiele, B.: Improved image boundaries for better video segmentation. arXiv preprint arXiv:1605.03718 (2016)

  19. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)

    Article  Google Scholar 

  20. Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: Proceedings of thr Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 1, pp. 105–112. IEEE (2001)

    Google Scholar 

  21. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2282 (2012)

    Article  Google Scholar 

  22. Paris, S., Durand, F.: A topological approach to hierarchical segmentation using mean shift. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  23. Fowlkes, C., Belongie, S., Malik, J.: Efficient spatiotemporal grouping using the Nystrom method. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I–231. IEEE (2001)

    Google Scholar 

  24. Chang, J., Wei, D., Fisher, J.: A video representation using temporal superpixels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2051–2058 (2013)

    Google Scholar 

  25. Reso, M., Jachalsky, J., Rosenhahn, B., Ostermann, J.: Temporally consistent superpixels. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 385–392 (2013)

    Google Scholar 

  26. Bergh, M., Roig, G., Boix, X., Manen, S., Gool, L.: Online video seeds for temporal window objectness. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 377–384 (2013)

    Google Scholar 

  27. Xu, C., Corso, J.J.: Evaluation of super-voxel methods for early video processing. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1202–1209. IEEE (2012)

    Google Scholar 

  28. Xu, C., Corso, J.J.: LIBSVX: a supervoxel library and benchmark for early video processing. Int. J. Comput. Vis., 1–19 (2016)

    Google Scholar 

  29. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  30. Meer, P., Georgescu, B.: Edge detection with embedded confidence. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1351–1365 (2001)

    Article  Google Scholar 

  31. Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26, 530–549 (2004)

    Article  Google Scholar 

  32. Worth, A.: The Internet Brain Segmentation Repository (IBSR) (2016). http://www.nitrc.org/projects/ibsr

  33. Chen, A.Y., Corso, J.J.: Propagating multi-class pixel labels throughout video frames. In: 2010 Western New York Image Processing Workshop (WNYIPW), pp. 14–17. IEEE (2010)

    Google Scholar 

  34. Belongie, S., Malik, J.: Finding boundaries in natural images: a new method using point descriptors and area completion. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 751–766. Springer, Heidelberg (1998). doi:10.1007/BFb0055702

    Google Scholar 

  35. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: From contours to regions: an empirical evaluation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 2294–2301. IEEE (2009)

    Google Scholar 

  36. Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18, 1163–1173 (1996)

    Article  Google Scholar 

  37. Corso, J.J., Sharon, E., Dube, S., El-Saden, S., Sinha, U., Yuille, A.: Efficient multilevel brain tumor segmentation with integrated Bayesian model classification. IEEE Trans. Med. Imaging 27, 629–640 (2008)

    Article  Google Scholar 

  38. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34, 1993–2024 (2015)

    Article  Google Scholar 

  39. Malisiewicz, T., Efros, A.A.: Improving spatial support for objects via multiple segmentations. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 1–10 (2007)

    Google Scholar 

  40. Schick, A., Fischer, M., Stiefelhagen, R.: Measuring and evaluating the compactness of superpixels. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 930–934. IEEE (2012)

    Google Scholar 

  41. Ren, X., Malik, J.: Learning a classification model for segmentation. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, pp. 10–17. IEEE (2003)

    Google Scholar 

  42. Briggman, K., Denk, W., Seung, S., Helmstaedter, M.N., Turaga, S.C.: Maximin affinity learning of image segmentation. In: Advances in Neural Information Processing Systems, pp. 1865–1873 (2009)

    Google Scholar 

  43. Brox, T., Malik, J.: Object segmentation by long term analysis of point trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 282–295. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15555-0_21

    Chapter  Google Scholar 

  44. Palou, G., Salembier, P.: Hierarchical video representation with trajectory binary partition tree. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2099–2106 (2013)

    Google Scholar 

  45. Vu, N., Manjunath, B.: Shape prior segmentation of multiple objects with graph cuts. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  46. Chen, F., Yu, H., Hu, R., Zeng, X.: Deep learning shape priors for object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1870–1877 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengliang Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yang, C., Sethi, M., Rangarajan, A., Ranka, S. (2017). Supervoxel-Based Segmentation of 3D Volumetric Images. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10111. Springer, Cham. https://doi.org/10.1007/978-3-319-54181-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54181-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54180-8

  • Online ISBN: 978-3-319-54181-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics