Skip to main content

Dictionary Reduction: Automatic Compact Dictionary Learning for Classification

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10111))

Included in the following conference series:

Abstract

A complete and discriminative dictionary can achieve superior performance. However, it also consumes extra processing time and memory, especially for large datasets. Most existing compact dictionary learning methods need to set the dictionary size manually, therefore an appropriate dictionary size is usually obtained in an exhaustive search manner. How to automatically learn a compact dictionary with high fidelity is still an open challenge. We propose an automatic compact dictionary learning (ACDL) method which can guarantee a more compact and discriminative dictionary while at the same time maintaining the state-of-the-art classification performance. We incorporate two innovative components in the formulation of the dictionary learning algorithm. First, an indicator function is introduced that automatically removes highly correlated dictionary atoms with weak discrimination capacity. Second, two additional constraints, namely, the sum-to-one and the non-negative constraints are imposed on the sparse coefficients. On one hand, this achieves the same functionality as the \(L_2\)-normalization on the raw data to maintain a stable sparsity threshold. On the other hand, this effectively preserves the geometric structure of the raw data which would be otherwise destroyed by the \(L_2\)-normalization. Extensive evaluations have shown that the preservation of geometric structure of the raw data plays an important role in achieving high classification performance with smallest dictionary size. Experimental results conducted on four recognition problems demonstrate the proposed ACDL can achieve competitive classification performance using a drastically reduced dictionary (https://github.com/susanqq/ACDL.git).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: a strategy employed by V1? Vis. Res. 37, 3311–3325 (1997)

    Article  Google Scholar 

  2. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15, 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  3. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54, 4311 (2006)

    Article  Google Scholar 

  4. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 689–696. ACM (2009)

    Google Scholar 

  5. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8. IEEE (2008)

    Google Scholar 

  6. Ramirez, I., Sprechmann, P., Sapiro, G.: Classification and clustering via dictionary learning with structured incoherence and shared features. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3501–3508. IEEE (2010)

    Google Scholar 

  7. Zhang, Q., Li, B.: Discriminative K-SVD for dictionary learning in face recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2691–2698. IEEE (2010)

    Google Scholar 

  8. Jiang, Z., Lin, Z., Davis, L.S.: Label consistent K-SVD: learning a discriminative dictionary for recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2651–2664 (2013)

    Article  Google Scholar 

  9. Yang, M., Zhang, L., Feng, X., Zhang, D.: Fisher discrimination dictionary learning for sparse representation. In: IEEE International Conference on Computer Vision (ICCV), pp. 543–550. IEEE (2011)

    Google Scholar 

  10. Mairal, J., Ponce, J., Sapiro, G., Zisserman, A., Bach, F.R.: Supervised dictionary learning. In: Advances in Neural Information Processing Systems, pp. 1033–1040 (2009)

    Google Scholar 

  11. Mairal, J., Bach, F., Ponce, J.: Task-driven dictionary learning. IEEE Trans. Pattern Anal. Mach. Intell. 34, 791–804 (2012)

    Article  Google Scholar 

  12. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 210–227 (2009)

    Article  Google Scholar 

  13. Rahimpour, A., Taalimi, A., Luo, J., Qi, H.: Distributed object recognition in smart camera networks. In: IEEE International Conference on Image Processing, Phoenix, Arizona, USA. IEEE (2016)

    Google Scholar 

  14. Lazebnik, S., Raginsky, M.: Supervised learning of quantizer codebooks by information loss minimization. IEEE Trans. Pattern Anal. Mach. Intell. 31, 1294–1309 (2009)

    Article  Google Scholar 

  15. Liu, J., Shah, M.: Learning human actions via information maximization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8. IEEE (2008)

    Google Scholar 

  16. Kong, S., Wang, D.: A dictionary learning approach for classification: separating the particularity and the commonality. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 186–199. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33718-5_14

    Chapter  Google Scholar 

  17. Jiang, Z., Zhang, G., Davis, L.S.: Submodular dictionary learning for sparse coding. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3418–3425. IEEE (2012)

    Google Scholar 

  18. Yang, M., Dai, D., Shen, L., Van Gool, L.: Latent dictionary learning for sparse representation based classification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4138–4145. IEEE (2014)

    Google Scholar 

  19. Qiu, Q., Patel, V.M., Chellappa, R.: Information-theoretic dictionary learning for image classification. IEEE Trans. Pattern Anal. Mach. Intell. 36, 2173–2184 (2014)

    Article  Google Scholar 

  20. Lu, C., Shi, J., Jia, J.: Scale adaptive dictionary learning. IEEE Trans. Image Process. 23, 837–847 (2014)

    Article  MathSciNet  Google Scholar 

  21. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1, 123–231 (2013)

    Google Scholar 

  22. Rakotomamonjy, A.: Direct optimization of the dictionary learning problem. IEEE Trans. Sig. Process. 61, 5495–5506 (2013)

    Article  MathSciNet  Google Scholar 

  23. Naikal, N., Yang, A.Y., Sastry, S.S.: Towards an efficient distributed object recognition system in wireless smart camera networks. In: 13th Conference on Information Fusion (FUSION), pp. 1–8. IEEE (2010)

    Google Scholar 

  24. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 2169–2178. IEEE (2006)

    Google Scholar 

  25. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In: CVPR Workshop on Generative-Mode Based Vision. IEEE (2004)

    Google Scholar 

  26. Naikal, N., Yang, A.Y., Sastry, S.S.: Informative feature selection for object recognition via sparse PCA. In: IEEE International Conference on Computer Vision (ICCV), pp. 818–825. IEEE (2011)

    Google Scholar 

  27. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: DECAF: a deep convolutional activation feature for generic visual recognition. In: Proceedings of the 31st International Conference on Machine Learning (ICML-2014), pp. 647–655 (2014)

    Google Scholar 

  28. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10590-1_53

    Google Scholar 

  29. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  30. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Advances in Neural Information Processing Systems, pp. 487–495 (2014)

    Google Scholar 

  31. Gao, S., Tsang, I.W.H., Chia, L.T.: Laplacian sparse coding, hypergraph laplacian sparse coding, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35, 92–104 (2013)

    Article  Google Scholar 

  32. Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage architecture for object recognition? In: IEEE International Conference on Computer Vision (ICCV), pp. 2146–2153. IEEE (2009)

    Google Scholar 

  33. Ciregan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Song, Y., Zhang, Z., Liu, L., Rahimpour, A., Qi, H. (2017). Dictionary Reduction: Automatic Compact Dictionary Learning for Classification. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10111. Springer, Cham. https://doi.org/10.1007/978-3-319-54181-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54181-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54180-8

  • Online ISBN: 978-3-319-54181-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics