Skip to main content

Point-Cut: Interactive Image Segmentation Using Point Supervision

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10111))

Included in the following conference series:

Abstract

Interactive image segmentation is a fundamental task in many applications in graphics, image processing, and computational photography. Many leading methods formulate elaborated energy functionals, achieving high performance with reflecting human’s intention. However, they show limitations in practical usage since user interaction is labor intensive to obtain segments efficiently. We present an interactive segmentation method to handle this problem. Our approach, called point cut, requires minimal point supervision only. To this end, we use off-the-shelf object proposal methods that generate object candidates with high recall. With the single point supervision, foreground appearance can be estimated with high accuracy, and then integrated into a graph cut optimization to generate binary segments. Intensive experiments show that our approach outperforms existing methods for interactive object segmentation both qualitatively and quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE TPAMI 22(8), 805–888 (2000)

    Google Scholar 

  2. Carreira, J., Sminchisescu, C.: CPMC: automatic object segmentation using constrained parametric min-cuts. IEEE TPAMI 34(7), 1312–1328 (2012)

    Article  Google Scholar 

  3. Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. IJCV 104(2), 154–171 (2013)

    Article  Google Scholar 

  4. Manén, S., Guillaumin, M., Gool, L.: Prime object proposals with randomized prim’s algorithm. In: ICCV (2013)

    Google Scholar 

  5. Arbeláez, P., Pont-Tuset, J., Barron, J., Marques, F., Malik, J.: Multiscale combinatorial grouping. In: CVPR (2014)

    Google Scholar 

  6. Krähenbühl, P., Koltun, V.: Geodesic object proposals. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 725–739. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10602-1_47

    Google Scholar 

  7. Ren, X., Malik, J.: Tracking as repeated figure/ground segmentation. In: CVPR (2007)

    Google Scholar 

  8. Cinbis, R., Verbeek, J., Schmid, C.: Segmentation driven object detection with Fisher vectors. In: ICCV (2013)

    Google Scholar 

  9. Rother, C., Kolmogorov, V., Blake, A.: Grabcut: Interactive foreground extraction using iterated graph cuts. In: ACM SIGGRAPH (2004)

    Google Scholar 

  10. Mortensen, E.N., Barret, W.A.: Intelligent scissors for image composition. In: ACM SIGGRAPH (1995)

    Google Scholar 

  11. Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In: ICCV (2001)

    Google Scholar 

  12. Grady, L.: Random walks for image segmentation. IEEE TPAMI 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  13. Kim, T.H., Lee, K.M., Lee, S.U.: Generative image segmentation using random walks with restart. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 264–275. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88690-7_20

    Chapter  Google Scholar 

  14. Casaca, W., Nonato, L.G., Taubin, G.: Laplacian coordinates for seeded image segmentation. In: CVPR (2014)

    Google Scholar 

  15. Santner, J., Pock, T., Bischof, H.: Interactive multi-label segmentation. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6492, pp. 397–410. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19315-6_31

    Chapter  Google Scholar 

  16. Borji, A., Cheng, M.M., Jiang, H., Li, J.: Salient object detection: a benchmark. IEEE TIP 24(12), 5706–5722 (2015)

    MathSciNet  Google Scholar 

  17. Cheng, M.M., Mitra, N.J., Huang, X., Torr, P.H., Hu, S.: Global contrast based salient region detection. IEEE TPAMI 37(3), 569–582 (2015)

    Article  Google Scholar 

  18. Kim, T., Lee, K., Lee, S.: Nonparametric higher-order learning for interactive segmentation. In: CVPR (2010)

    Google Scholar 

  19. Wang, T., Han, B., Collomosse, J.: TouchCut: fast image and video segmentation using single-touch interaction. CVIU 120, 14–30 (2014)

    Google Scholar 

  20. Xu, J., Collins, M.D., Singh, V.: Incorporating user interaction and topological constraints within contour completion via discrete calculus. In: CVPR (2013)

    Google Scholar 

  21. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  22. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV (2001)

    Google Scholar 

  23. Levin, A., Lischinski, D., Weiss, Y.: Colorization using Optimization. In: ACM SIGGRAPH (2004)

    Google Scholar 

  24. Chuang, Y.Y., Curless, B., Salesin, D.H., Szeliski, R.: A bayesian approach to digital matting. In: CVPR (2001)

    Google Scholar 

  25. An, X., Pellacini, F.: AppProp: all-pairs appearance-space edit propagation. In: ACM SIGGRAPH (2008)

    Google Scholar 

  26. Dai, J., He, K., Sun, J.: BoxSup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: ICCV (2015)

    Google Scholar 

  27. Lin, D., Dai, J., Jia, J., He, K., Sun, J.: ScribbleSup: scribble-supervised convolutional networks for semantic segmentation. In: CVPR (2016)

    Google Scholar 

  28. Lempitsky, V., Kohli, P., Rother, C., Sharp, T.: Image segmentation with a bounding box prior. In: ICCV (2009)

    Google Scholar 

  29. Tang, M., Gorelick, L., Veksler, O., Boykov, Y.: Grabcut in one cut. In: ICCV (2013)

    Google Scholar 

  30. Wu, J., Zhao, Y., Zhu, J., Luo, S., Tu, Z.: MILCut: A sweeping line multiple instance learning paradigm for interactive image segmentation. In: CVPR (2014)

    Google Scholar 

  31. Cheng, M.M., Prisacariu, V.A., Zheng, S., Torr, P.H., Rother, C.: DenseCut: densely connected CRFs for realtime GrabCut. In: Pacific Graphics (2015)

    Google Scholar 

  32. Yu, H., Zhou, Y., Qian, H., Xian, M., Lin, Y., Guo, D., Zheng, K., Abdelfatah, K., Wang, S.: LooseCut: interactive image segmentation with loosely bounded boxes. arXiv preprint arXiv:1507.03060 (2015)

  33. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. IJCV 59(2), 167–181 (2004)

    Article  Google Scholar 

  34. Bai, J., Wu, X.: Error-tolerant scribbles based interactive image segmentation. In: CVPR (2014)

    Google Scholar 

  35. Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.Y.: Learning to detect a salient object. IEEE TPAMI 33(2), 353–367 (2011)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by Institute for Information and communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. R0115-15-1007, High quality 2d-to-multiview contents generation from large-scale RGB+D database).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwanghoon Sohn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Oh, C., Ham, B., Sohn, K. (2017). Point-Cut: Interactive Image Segmentation Using Point Supervision. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10111. Springer, Cham. https://doi.org/10.1007/978-3-319-54181-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54181-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54180-8

  • Online ISBN: 978-3-319-54181-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics