Abstract
Interactive image segmentation is a fundamental task in many applications in graphics, image processing, and computational photography. Many leading methods formulate elaborated energy functionals, achieving high performance with reflecting human’s intention. However, they show limitations in practical usage since user interaction is labor intensive to obtain segments efficiently. We present an interactive segmentation method to handle this problem. Our approach, called point cut, requires minimal point supervision only. To this end, we use off-the-shelf object proposal methods that generate object candidates with high recall. With the single point supervision, foreground appearance can be estimated with high accuracy, and then integrated into a graph cut optimization to generate binary segments. Intensive experiments show that our approach outperforms existing methods for interactive object segmentation both qualitatively and quantitatively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE TPAMI 22(8), 805–888 (2000)
Carreira, J., Sminchisescu, C.: CPMC: automatic object segmentation using constrained parametric min-cuts. IEEE TPAMI 34(7), 1312–1328 (2012)
Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. IJCV 104(2), 154–171 (2013)
Manén, S., Guillaumin, M., Gool, L.: Prime object proposals with randomized prim’s algorithm. In: ICCV (2013)
Arbeláez, P., Pont-Tuset, J., Barron, J., Marques, F., Malik, J.: Multiscale combinatorial grouping. In: CVPR (2014)
Krähenbühl, P., Koltun, V.: Geodesic object proposals. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 725–739. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10602-1_47
Ren, X., Malik, J.: Tracking as repeated figure/ground segmentation. In: CVPR (2007)
Cinbis, R., Verbeek, J., Schmid, C.: Segmentation driven object detection with Fisher vectors. In: ICCV (2013)
Rother, C., Kolmogorov, V., Blake, A.: Grabcut: Interactive foreground extraction using iterated graph cuts. In: ACM SIGGRAPH (2004)
Mortensen, E.N., Barret, W.A.: Intelligent scissors for image composition. In: ACM SIGGRAPH (1995)
Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In: ICCV (2001)
Grady, L.: Random walks for image segmentation. IEEE TPAMI 28(11), 1768–1783 (2006)
Kim, T.H., Lee, K.M., Lee, S.U.: Generative image segmentation using random walks with restart. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 264–275. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88690-7_20
Casaca, W., Nonato, L.G., Taubin, G.: Laplacian coordinates for seeded image segmentation. In: CVPR (2014)
Santner, J., Pock, T., Bischof, H.: Interactive multi-label segmentation. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6492, pp. 397–410. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19315-6_31
Borji, A., Cheng, M.M., Jiang, H., Li, J.: Salient object detection: a benchmark. IEEE TIP 24(12), 5706–5722 (2015)
Cheng, M.M., Mitra, N.J., Huang, X., Torr, P.H., Hu, S.: Global contrast based salient region detection. IEEE TPAMI 37(3), 569–582 (2015)
Kim, T., Lee, K., Lee, S.: Nonparametric higher-order learning for interactive segmentation. In: CVPR (2010)
Wang, T., Han, B., Collomosse, J.: TouchCut: fast image and video segmentation using single-touch interaction. CVIU 120, 14–30 (2014)
Xu, J., Collins, M.D., Singh, V.: Incorporating user interaction and topological constraints within contour completion via discrete calculus. In: CVPR (2013)
Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV (2001)
Levin, A., Lischinski, D., Weiss, Y.: Colorization using Optimization. In: ACM SIGGRAPH (2004)
Chuang, Y.Y., Curless, B., Salesin, D.H., Szeliski, R.: A bayesian approach to digital matting. In: CVPR (2001)
An, X., Pellacini, F.: AppProp: all-pairs appearance-space edit propagation. In: ACM SIGGRAPH (2008)
Dai, J., He, K., Sun, J.: BoxSup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: ICCV (2015)
Lin, D., Dai, J., Jia, J., He, K., Sun, J.: ScribbleSup: scribble-supervised convolutional networks for semantic segmentation. In: CVPR (2016)
Lempitsky, V., Kohli, P., Rother, C., Sharp, T.: Image segmentation with a bounding box prior. In: ICCV (2009)
Tang, M., Gorelick, L., Veksler, O., Boykov, Y.: Grabcut in one cut. In: ICCV (2013)
Wu, J., Zhao, Y., Zhu, J., Luo, S., Tu, Z.: MILCut: A sweeping line multiple instance learning paradigm for interactive image segmentation. In: CVPR (2014)
Cheng, M.M., Prisacariu, V.A., Zheng, S., Torr, P.H., Rother, C.: DenseCut: densely connected CRFs for realtime GrabCut. In: Pacific Graphics (2015)
Yu, H., Zhou, Y., Qian, H., Xian, M., Lin, Y., Guo, D., Zheng, K., Abdelfatah, K., Wang, S.: LooseCut: interactive image segmentation with loosely bounded boxes. arXiv preprint arXiv:1507.03060 (2015)
Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. IJCV 59(2), 167–181 (2004)
Bai, J., Wu, X.: Error-tolerant scribbles based interactive image segmentation. In: CVPR (2014)
Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.Y.: Learning to detect a salient object. IEEE TPAMI 33(2), 353–367 (2011)
Acknowledgement
This work was supported by Institute for Information and communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. R0115-15-1007, High quality 2d-to-multiview contents generation from large-scale RGB+D database).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Oh, C., Ham, B., Sohn, K. (2017). Point-Cut: Interactive Image Segmentation Using Point Supervision. In: Lai, SH., Lepetit, V., Nishino, K., Sato, Y. (eds) Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science(), vol 10111. Springer, Cham. https://doi.org/10.1007/978-3-319-54181-5_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-54181-5_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54180-8
Online ISBN: 978-3-319-54181-5
eBook Packages: Computer ScienceComputer Science (R0)