Skip to main content

Introduction

  • Chapter
  • First Online:
Homogeneous Catalysis with Renewables

Part of the book series: Catalysis by Metal Complexes ((CMCO,volume 39))

  • 948 Accesses

Abstract

In “green chemistry”, catalysis is a very helpful tool to convert basic chemicals into valuable fine and specialty products. By decreasing the energy of activation, the catalysts enable reactions which are not possible to carry out without the catalyst. This general rule is valid both for classical petrochemicals and of course for renewables. Depending on the molecular structure of the renewables (see Sect. 1.2), the reaction types may differ but the basis ideas remain the same.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

General literature

  1. Behrens M, Datye AK (eds) (2013) Catalysis for the conversion of biomass and its derivatives, Edition Open Access

    Google Scholar 

  2. Behr A, Neubert P (2012) Chapter 38: Homogeneous catalysis with renewables. In: Applied homogeneous catalysis, Wiley-VCH, Weinheim

    Google Scholar 

  3. Ulber R, Sell D, Hirth T (eds) (2011) Renewable raw materials—new feedstocks for the chemical industry. Wiley-VCH, Weinheim

    Google Scholar 

  4. Habermehl G, Hammann PE, Krebs HC, Ternes W (2008) Naturstoffchemie—Eine Einführung, 3rd edn. Springer, Berlin

    Google Scholar 

  5. Centi G, van Santen RA (eds) (2007) Catalysis for renewables. Wiley-VCH, Weinheim

    Google Scholar 

Oleochemicals

  1. Türk O (2014) Chapter 16.1: Öle und Fette. In: Stoffliche Nutzung nachwachsender Rohstoffe. Springer Vieweg, Wiesbaden

    Google Scholar 

  2. Clark JH, Deswarte FEI (eds) (2008) Chapter 2.2 Plant oils. In: Introduction to chemicals from biomass, Wiley, Chichester

    Google Scholar 

  3. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2449–2471. Chapter 3: Vegetable oils and animal fats

    Google Scholar 

  4. Ullmann’s Encyclopedia of Industrial Chemistry, vol 13, 6th ed. Wiley-VCH, Weinheim (2003). Fats and fatty oils (see also: electronic version)

    Google Scholar 

  5. Gunstone FD, Hamilton RJ (eds) (2001) Oleochemical manufacture and applications. Sheffield Academic Press

    Google Scholar 

  6. Johnson RW, Fritz E (eds) (1989) Fatty acids in industry. Marcel Dekker Inc., New York

    Google Scholar 

Terpenes

  1. Hu J (ed) (2014) New developments in terpenes research. Nova Science Publ.

    Google Scholar 

  2. Behr A, Wintzer A (2014) Chapter 6: From terpenoids to amines: a critical review. In: Hu J (ed) New developments in terpenes. Nova Science Publ.

    Google Scholar 

  3. Ullmann’s encyclopedia of industrial chemistry, 7th ed. Wiley-VCH, Weinheim (2011–2014). Terpenes

    Google Scholar 

  4. Behr A, Johnen L (2009) Myrcene as a natural base chemical in sustainable chemistry: a critical review. ChemSusChem 2:1072–1095

    Article  CAS  Google Scholar 

  5. Habermehl G, Hammann PE, Krebs HC, Ternes W (2008) Chapter 1: Terpene. In: Naturstoffchemie—Eine Einführung, 3rd ed. Springer, Berlin

    Google Scholar 

  6. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107. Chapter 4, p. 2472: Terpenes

    Google Scholar 

  7. Kirk-Othmer encyclopedia of chemical technology, 5th ed. Wiley Interscience (2006). Terpenes and terpenoids

    Google Scholar 

  8. Breitmaier E (2005) Terpene, 2nd ed. Wiley-VCH, Weinheim

    Google Scholar 

  9. Monteiro JL, Veloso CO (2004) Catalytic conversion of terpenes into fine chemicals. Topics Catal 27:169–180

    Article  CAS  Google Scholar 

  10. Terpenoids and steroids—specialist periodical report, Series of review articles. The Royal Society of Chemistry, London

    Google Scholar 

Carbohydrates

  1. Sheldon R (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16:950–963

    Article  CAS  Google Scholar 

  2. Türk O (2014) Chapter 4.1: Cellulose. In: Stoffliche Nutzung nachwachsender Rohstoffe. Springer Vieweg, Wiesbaden

    Google Scholar 

  3. Wittcoff HA, Reuben BG, Plotkin JS (2013) Chapter 16: Carbohydrates. In: industrial organic chemicals. Wiley

    Google Scholar 

  4. Wüstenberg T (2013) Cellulose und Cellulosederivate—Grundlagen, Wirkungen und Applikationen. Behr’s Verlag, Hamburg

    Google Scholar 

  5. Van de Vyver S, Geboers J, Jacobs PA, Sels BF (2011) Recent advances in the catalytic conversion of cellulose. ChemCatChem 3:82–94

    Article  Google Scholar 

  6. Lichtenthaler FW (2010) Carbohydrates as organic raw materials. In: Ullmann’s encyclopedia of industrial chemistry (electronic version)

    Google Scholar 

  7. Miljkovic M (2010) Carbohydrates: synthesis, mechanisms and stereoelectronic effects. Springer, New York

    Google Scholar 

  8. Muffler K, Ulber R (2008) Use of renewable raw materials in the chemical industry—beyond sugar and starch. Chem Eng Technol 31:638–646

    Article  CAS  Google Scholar 

  9. Garg HG, Cowmann MK, Hales CA (2008) Carbohydrate chemistry, biology and medical applications. Elsevier, Oxford

    Google Scholar 

  10. Sinnott ML (2008) Carbohydrate chemistry and biochemistry—structure and mechanism. RSC Publ.

    Google Scholar 

  11. Clark JH, Deswarte FEI (eds) (2008) Chapter 2.3 Carbohydrates. In: Introduction to chemicals from biomass. Wiley, Chichester

    Google Scholar 

  12. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2448, Chapter 2

    Google Scholar 

  13. Lindhorst TK (2007) Essential of carbohydrate chemistry and biochemistry. Wiley-VCH, Weinheim

    Google Scholar 

  14. Buchholz K, Ekelhoff B (2005) Technologie der Kohlenhydrate. In: Winnacker-Küchler—Chemische Technik vol 8, 5th ed., p 315 f

    Google Scholar 

  15. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: faszinierendes Biopolymer und nachhaltiger Rohstoff. Angew Chem 117:3411–3458

    Article  Google Scholar 

  16. Röper H (2002) Renewable raw materials in Europe—industrial utilization of starch and sugar. Starch/Stärke 54:89–99

    Article  Google Scholar 

Lignin

  1. Clark JH, Deswarte FEI (eds) (2008) Chapter 2.4 Lignin. In: Introduction to chemicals from biomass. Wiley, Chichester

    Google Scholar 

  2. Roth K (2016) Chem unserer Zeit 50:226–232

    Article  CAS  Google Scholar 

  3. Frank O (2015) Lignin in polymer composites. Elsevier, Amsterdam

    Google Scholar 

  4. Patersen RJ (2012) Lignin-properties and applications in biotechnology and bioenergy. Nova Science Publ, New York

    Google Scholar 

  5. Calvo-Flores FG, Dobado JA, Garcia JI, Martin-Martinez FJ (2015) Lignin and lignans as renewable raw materials. Wiley, Hoboken

    Book  Google Scholar 

  6. Lin SY, Dence LW (eds) (2011) Methods in lignin chemistry. Springer, Berlin

    Google Scholar 

  7. Saake B, Lehnen R (2012) Lignin. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

Peptides

  1. Türk O (2014) Chapter 3: Proteine. In: Stoffliche Nutzung nachwachsender Rohstoffe. Springer Vieweg, Wiesbaden

    Google Scholar 

  2. Clark JH, Deswarte FEI (eds) (2008) Chapter 2.5 Proteins. In: Introduction to chemicals from biomass. Wiley, Chichester

    Google Scholar 

  3. Voet D, Voet JG, Pratt CW (2008) Chapters 4 till 7. Lehrbuch der Biochemie, 2nd ed. Wiley-VCH, Weinheim

    Google Scholar 

  4. Ullmann’s encyclopedia of industrial chemistry, Wiley-VCH, Weinheim, vol 30, 6th ed. (2003). Proteins (see also: electronic version)

    Google Scholar 

Carbon dioxide

  1. Klankermayer J, Wesselbaum S, Beydoun K, Leitner W (2016) Angew Chem Int Ed 55:7296–7343

    Article  CAS  Google Scholar 

  2. Aresta M (2010) Carbon dioxide as a chemical feedstock. Wiley-VCH, Weinheim

    Book  Google Scholar 

  3. Behr A, Neuberg S (2009) Erdöl Erdgas Kohle 125:367–374

    CAS  Google Scholar 

  4. Ullmann’s encyclopedia of industrial chemistry, Wiley-VCH, Weinheim, vol 6, 6th ed. (2003). Carbon dioxide (see also: electronic version)

    Google Scholar 

  5. Behr A (1988) Carbon dioxide activation by metal complexes. VCH Verlag, Weinheim

    Google Scholar 

  6. Behr A (1988) Angew Chem 100:681–698

    Article  CAS  Google Scholar 

  7. Aresta M, Forti G (1987) Carbon dioxide as a source of carbon. D. Reidel Publ, Dordrecht

    Book  Google Scholar 

  8. Aresta M, Dibenedetto A, Quaranta E (2016) Reaction mechanisms in carbon dioxide conversion. Springer-Verlag, Berlin, Heidelberg

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arno Behr .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Behr, A., Vorholt, A.J. (2017). Introduction. In: Homogeneous Catalysis with Renewables. Catalysis by Metal Complexes, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-319-54161-7_1

Download citation

Publish with us

Policies and ethics