Angle-Based Preference Models in Multi-objective Optimization

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10173)


Solutions that provide a balance between different objective values in multi-objective optimization can be identified by assessing the curvature of the Pareto front. We analyze how methods based on angles have been utilized in the past for this task and propose a new angle-based measure—angle utility—that ranks points of the Pareto front irrespective of its shape or the number of objectives. An algorithm for finding angle utility optima is presented and a computational study shows that this algorithm is successful in identifying angle utility optima.


Multi-objective optimization Preference modeling Angle utility Scalarization Evolutionary algorithm 


  1. 1.
    Agrawal, R.B., Deb, K.: Simulated binary crossover for continuous search space. Complex Syst. 9(3), 1–15 (1994)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Batista, L.S., Campelo, F., Guimarães, F.G., Ramírez, J.A.: Pareto cone \(\epsilon \)-dominance: improving convergence and diversity in multiobjective evolutionary algorithms. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 76–90. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective optimization. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 722–731. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30217-9_73 CrossRefGoogle Scholar
  4. 4.
    Branke, J., Deb, K., Miettinen, K., Slowinski, R. (eds.): Multiobjective optimization: interactive and evolutionary approaches. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  5. 5.
    Braun, M., Dengiz, T., Mauser, I., Schmeck, H.: Comparison of multi-objective evolutionary optimization in smart building scenarios. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 443–458. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-31204-0_29 CrossRefGoogle Scholar
  6. 6.
    Braun, M.A., Shukla, P.K., Schmeck, H.: Preference ranking schemes in multi-objective evolutionary algorithms. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 226–240. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19893-9_16 CrossRefGoogle Scholar
  7. 7.
    Coello Coello, C., Lamont, G., Van Veldhuizen, D.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  8. 8.
    Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Info. 26, 30–45 (1996)Google Scholar
  9. 9.
    Deb, K., Gupta, S.: Understanding knee points in bicriteria problems and their implications as preferred solution principles. Eng. Optim. 43(11), 1175–1204 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)CrossRefGoogle Scholar
  11. 11.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  12. 12.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Jain, L., Wu, X., Abraham, A., Jain, L., Goldberg, R. (eds.) Evol. Multiobjective Optim. Advanced Information and Knowledge Processing, pp. 105–145. Springer, London (2005)CrossRefGoogle Scholar
  13. 13.
    Emmerich, M., Deutz, A., Kruisselbrink, J., Shukla, P.K.: Cone-based hypervolume indicators: construction, properties, and efficient computation. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 111–127. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-37140-0_12 CrossRefGoogle Scholar
  14. 14.
    Emmerich, M.T., Deutz, A.H.: Test problems based on Lamé superspheres. In: Coello, C.A.C., Aguirre, A.H., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Greco, S., Ehrgott, M., Figueira, J. (eds.): Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, New York (2016)zbMATHGoogle Scholar
  16. 16.
    Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct. Multidisciplinary Optim. 26(6), 369–395 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pareto, V.: Cours d’économie politique. Librairie Droz (1896)Google Scholar
  18. 18.
    Shukla, P.K., Braun, M.A., Schmeck, H.: Theory and algorithms for finding knees. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 156–170. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-37140-0_15 CrossRefGoogle Scholar
  19. 19.
    Sudeng, S., Wattanapongsakorn, N.: Adaptive geometric angle-based algorithm with independent objective biasing for pruning pareto-optimal solutions. In: 2013 Science and Information Conference (SAI), pp. 514–523 (2013)Google Scholar
  20. 20.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations