Heterogeneous Evolutionary Swarms with Partial Redundancy Solving Multi-objective Tasks

  • Ruby L. V. Moritz
  • Sanaz Mostaghim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10173)


Consider a self-organized system of heterogeneous reconfigurable agents solving a multi-objective task. In this paper we analyze an evolutionary approach to make such a system adaptable. In principle, this system is comparable to a multi-objective genetic algorithm, however, requires asynchronous generations and decentralized evaluation- and selection processes. The primary objective of this paper is to introduce the proposed system, to provide several interesting theoretic properties and a primary experimental analysis. The heritable material (genes) compromises a parameter set that encodes an agents configuration and can be communicated between agents. We introduce partial redundancy into the system by supplying a certain number of agents with two parameter sets instead of one. These agents are denoted as redundant and are free to chose which of their two parameter sets is applied. A special focus lies on two strategies for the agents to derive a fitness value based on their property set(s) and the respective objective functions of the multi-objective task suitable for decentralized systems. A slightly more sophisticated approach with weights for each of the objectives performs just as good as a simple method where agents pick the best or respectively worst objective value. The results show that systems with low redundancy tend to lose a lot of diversity, however, redundant systems are slower in their adaptive process.


Fitness Evaluation Crossover Rate Hypervolume Indicator Asynchronous Generation Optimal Mutation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bongard, J.C.: Evolutionary robotics. Commun. ACM 56(8), 74–83 (2013)CrossRefGoogle Scholar
  2. 2.
    Bowers, R.I., Sevinç, E.: Preserving variability in sexual multi-agent systems with diploidy and dominance. In: Dikenelli, O., Gleizes, M.-P., Ricci, A. (eds.) ESAW 2005. LNCS (LNAI), vol. 3963, pp. 184–202. Springer, Heidelberg (2006). doi: 10.1007/11759683_12 CrossRefGoogle Scholar
  3. 3.
    Bowman, V.J.: On the relationship of the Tchebycheff norm and the efficient frontier of multiple-criteria objectives. In: Thiriez, H., Zionts, S. (eds.) Multiple Criteria Decision Making. LNE, vol. 130, pp. 76–86. Springer, Heidelberg (1976)CrossRefGoogle Scholar
  4. 4.
    Calabretta, R., Galbiati, R., Nolfi, S., Parisi, D.: Two is better than one: a diploid genotype for neural networks. Neural Process. Lett. 4(3), 149–155 (1996)CrossRefGoogle Scholar
  5. 5.
    Goldberg, D.E., Smith, R.E.: Nonstationary function optimization using genetic algorithms with dominance and diploidy. In: ICGA, pp. 59–68 (1987)Google Scholar
  6. 6.
    Haasdijk, E., Eiben, A., Winfield, A.: Individual, social and evolutionary adaptation in collective systems. In: Handbook of Collective Robotics, pp. 413–471. Pan Stanford, May 2013.
  7. 7.
    Hanna, L., Cagan, J.: Evolutionary multi-agent systems: an adaptive and dynamic approach to optimization. J. Mech. Des. 131(1), 011010 (2008). CrossRefGoogle Scholar
  8. 8.
    Herrera, F., Lozano, M.: Adaptation of genetic algorithm parameters based on fuzzy logic controllers. Genet. Algorithms Soft Comput. 8, 95–125 (1996)Google Scholar
  9. 9.
    Jaszkiewicz, A.: Genetic local search for multi-objective combinatorial optimization. Eur. J. Oper. Res. 137(1), 50–71 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Knowles, J.D., Corne, D.: Towards landscape analyses to inform the design of hybrid local search for the multiobjective quadratic assignment problem. HIS 87, 271–279 (2002)Google Scholar
  11. 11.
    Leung, K.S., Duan, Q.H., Xu, Z.B., Wong, C.: A new model of simulated evolutionary computation-convergence analysis and specifications. IEEE Trans. Evol. Comput. 5(1), 3–16 (2001)CrossRefGoogle Scholar
  12. 12.
    Lumley, A.J., Michalczyk, L., Kitson, J.J.N., Spurgin, L.G., Morrison, C.A., Godwin, J.L., Dickinson, M.E., Martin, O.Y., Emerson, B.C., Chapman, T., Gage, M.J.G.: Sexual selection protects against extinction. Nature 522(7557), 470–473 (2015). CrossRefGoogle Scholar
  13. 13.
    Mauldin, M.L.: Maintaining diversity in genetic search. In: AAAI, pp. 247–250 (1984)Google Scholar
  14. 14.
    Moritz, R., Middendorf, M.: Evolutionary inheritance mechanisms for multi-criteriadecision making in multi-agent systems. In: Proceedings of the 2015 on Genetic and Evolutionary Computation Conference, GECCO 2015, NY, USA, pp. 65–72. ACM, New York (2015)Google Scholar
  15. 15.
    Moritz, R., Mostaghim, S.: The influence of heredity models on adaptability in evolutionary swarms. In: Proceedings of the Conference on Genetic and Evolutionary Computation, GECCO 2016, NY, USA. ACM, New York (2016, to appear)Google Scholar
  16. 16.
    Moritz, R.L.V., Reich, E., Bernt, M., Middendorf, M.: A property preserving method for extending a single-objective problem instance to multiple objectives with specific correlations. In: Chicano, F., Hu, B., García-Sánchez, P. (eds.) EvoCOP 2016. LNCS, vol. 9595, pp. 18–33. Springer International Publishing, Cham (2016). doi: 10.1007/978-3-319-30698-8_2 CrossRefGoogle Scholar
  17. 17.
    Normark, B.B.: The evolution of alternative genetic systems in insects. Annu. Rev. Entomol. 48(1), 397–423 (2003)CrossRefGoogle Scholar
  18. 18.
    Normark, B.B.: Perspective: maternal kin groups and the origins of asymmetric genetic systems-genomic imprinting, haplodiploidy, and parthenogenesis. Evol. Int. J. Org. Evol. 60, 631–642 (2006)Google Scholar
  19. 19.
    Panait, L., Luke, S.: Cooperative multi-agent learning: the state of the art. Auton. Agent. Multi-Agent Syst. 11(3), 387–434 (2005)CrossRefGoogle Scholar
  20. 20.
    ’t Hoen, P.J., Jong, E.D.: Evolutionary multi-agent systems. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 872–881. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30217-9_88 CrossRefGoogle Scholar
  21. 21.
    Potts, J.C., Giddens, T.D., Yadav, S.B.: The development and evaluation of an improved genetic algorithm based on migration and artificial selection. IEEE Trans. Syst. Man Cybern. 24(1), 73–86 (1994)CrossRefGoogle Scholar
  22. 22.
    Shibata, T., Fukuda, T.: Coordinative behavior by genetic algorithm and fuzzy in evolutionary multi-agent system. In: 1993 Proceedings of the IEEE International Conference on Robotics and Automation, pp. 760–765. IEEE (1993)Google Scholar
  23. 23.
    Smith, J.M.: The Evolution of Sex, vol. 32. Cambridge University Press, Cambridge (1978)Google Scholar
  24. 24.
    Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: Analyzing the effect of objective correlation on the efficient set of MNK-landscapes. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 116–130. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25566-3_9 CrossRefGoogle Scholar
  25. 25.
    Whitacre, J.M., Rohlfshagen, P., Bender, A., Yao, X.: The role of degenerate robustness in the evolvability of multi-agent systems in dynamic environments. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 284–293. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15844-5_29 Google Scholar
  26. 26.
    Xu, Y., Qu, R., Li, R.: A simulated annealing based genetic local search algorithm for multi-objective multicast routing problems. Ann. Oper. Res. 206(1), 527–555 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yukiko, Y., Nobue, A.: A diploid genetic algorithm for preserving population diversity — Pseudo-Meiosis GA. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 36–45. Springer, Heidelberg (1994). doi: 10.1007/3-540-58484-6_248 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Otto-von-Guericke-University MagdeburgMagdeburgGermany

Personalised recommendations