Advertisement

On the Effect of Scalarising Norm Choice in a ParEGO implementation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10173)

Abstract

Computationally expensive simulations play an increasing role in engineering design, but their use in multi-objective optimization is heavily resource constrained. Specialist optimizers, such as ParEGO, exist for this setting, but little knowledge is available to guide their configuration. This paper uses a new implementation of ParEGO to examine three hypotheses relating to a key configuration parameter: choice of scalarising norm. Two hypotheses consider the theoretical trade-off between convergence speed and ability to capture an arbitrary Pareto front geometry. Experiments confirm these hypotheses in the bi-objective setting but the trade-off is largely unseen in many-objective settings. A third hypothesis considers the ability of dynamic norm scheduling schemes to overcome the trade-off. Experiments using a simple scheme offer partial support to the hypothesis in the bi-objective setting but no support in many-objective contexts. Norm scheduling is tentatively recommended for bi-objective problems for which the Pareto front geometry is concave or unknown.

Keywords

Expensive optimization Surrogate-based optimization Performance evaluation 

Notes

Acknowledgments

This work was supported by Jaguar Land Rover and the UK-EPSRC grant EP/L025760/1 as part of the jointly funded Programme for Simulation Innovation. The authors thank Joshua Knowles for discussions on ParEGO and surrogate-based optimization that helped inspire the research directions in this paper.

References

  1. 1.
    Cristescu, C., Knowles, J.: Surrogate-based multiobjective optimization: ParEGO update and test. In: Workshop on Computational Intelligence (UKCI) (2015)Google Scholar
  2. 2.
    Davins-Valldaura, J., Moussaoui, S., Pita-Gil, G., Plestan, F.: ParEGO extensions for multi-objective optimization of expensive evaluation functions. J. Global Optim. 67, 1–18 (2016)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Springer, London (2005)Google Scholar
  4. 4.
    Fonseca, C.M., Paquete, L., López-Ibánez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 1157–1163. IEEE (2006)Google Scholar
  5. 5.
    Giagkiozis, I., Fleming, P.J.: Methods for multi-objective optimization: an analysis. Inf. Sci. 293, 338–350 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Giagkiozis, I., Lygoe, R.J., Fleming, P.J.: Liger: an open source integrated optimization environment. In: Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 1089–1096. ACM (2013)Google Scholar
  7. 7.
    Horn, D., Wagner, T., Biermann, D., Weihs, C., Bischl, B.: Model-based multi-objective optimization: taxonomy, multi-point proposal, toolbox and benchmark. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 64–78. Springer, Cham (2015). doi: 10.1007/978-3-319-15934-8_5 Google Scholar
  8. 8.
    Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)CrossRefzbMATHGoogle Scholar
  9. 9.
    Jeong, S., Obayashi, S.: Efficient global optimization (EGO) for multi-objective problem and data mining. In: 2005 IEEE Congress on Evolutionary Computation, vol. 3, pp. 2138–2145. IEEE (2005)Google Scholar
  10. 10.
    Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Knowles, J.: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50–66 (2006)CrossRefGoogle Scholar
  12. 12.
    Mc Ginley, B., Maher, J., O’Riordan, C., Morgan, F.: Maintaining healthy population diversity using adaptive crossover, mutation, and selection. IEEE Trans. Evol. Comput. 15(5), 692–714 (2011)CrossRefGoogle Scholar
  13. 13.
    Miettinen, K., Ruiz, F., Wierzbicki, A.P.: Introduction to multiobjective optimization: interactive approaches. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 27–57. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88908-3_2 CrossRefGoogle Scholar
  14. 14.
    Ponweiser, W., Wagner, T., Biermann, D., Vincze, M.: Multiobjective optimization on a limited budget of evaluations using model-assisted \(\cal{S}\)-metric selection. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 784–794. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-87700-4_78 CrossRefGoogle Scholar
  15. 15.
    Scheffé, H.: Experiments with mixtures. J. Roy. Stat. Soc. Ser. B Methodol. 20, 344–360 (1958)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Tabatabaei, M., Hakanen, J., Hartikainen, M., Miettinen, K., Sindhya, K.: A survey on handling computationally expensive multiobjective optimization problems using surrogates: non-nature inspired methods. Struct. Multidiscip. Optim. 52(1), 1–25 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Van Veldhuizen, D.A., Lamont, G.B.: On measuring multiobjective evolutionary algorithm performance. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 204–211. IEEE (2000)Google Scholar
  18. 18.
    Voutchkov, I., Keane, A.: Multi-objective optimization using surrogates. In: Tenne, Y., Goh, C.-K. (eds.) Computational Intelligence in Optimization, pp. 155–175. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Wagner, T.: Planning and multi-objective optimization of manufacturing processes by means of empirical surrogate models. Ph.D. thesis (2013)Google Scholar
  20. 20.
    Zaefferer, M., Bartz-Beielstein, T., Naujoks, B., Wagner, T., Emmerich, M.: A case study on multi-criteria optimization of an event detection software under limited budgets. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 756–770. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-37140-0_56 CrossRefGoogle Scholar
  21. 21.
    Zhang, Q., Liu, W., Tsang, E., Virginas, B.: Expensive multiobjective optimization by MOEA/D with Gaussian process model. IEEE Trans. Evol. Comput. 14(3), 456–474 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Automatic Control and Systems EngineeringUniversity of SheffieldSheffieldUK
  2. 2.Department of Mechanical EngineeringOrt Braude College of EngineeringKarmielIsrael

Personalised recommendations