Adaptive Operator Selection for Many-Objective Optimization with NSGA-III

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10173)


The number of objectives in real-world problems has increased in recent years and better algorithms are needed to deal efficiently with it. One possible improvement to such algorithms is the use of adaptive operator selection mechanisms in many-objective optimization algorithms. In this work, two adaptive operator selection mechanisms, Probability Matching (PM) and Adaptive Pursuit (AP), are incorporated into the NSGA-III framework to autonomously select the most suitable operator while solving a many-objective problem. Our proposed approaches, NSGA-III\(_{\text {AP}}\) and NSGA-III\(_{\text {PM}}\), are tested on benchmark instances from the DTLZ and WFG test suits and on instances of the Protein Structure Prediction Problem. Statistical tests are performed to infer the significance of the results. The preliminary results of the proposed approaches are encouraging.


Many-objective optimization Protein structure prediction Adaptive operator selection Probability matching Adaptive pursuit NSGA-III 



The authors acknowledge CNPq Grants 456179/2014-3, 483974/2013-7, and 311605/2011-7 for the partial financial support.


  1. 1.
    Brasil, C.R.S., Delbem, A.C.B., da Silva, F.L.B.: Multiobjective evolutionary algorithm with many tables for purely ab initio protein structure prediction. J. Comput. Chem. 34(20), 1719–1734 (2013)CrossRefGoogle Scholar
  2. 2.
    Coello, C.A.C., Cortés, N.C.: Solving multiobjective optimization problems using an artificial immune system. Genet. Program. Evolvable Mach. 6(2), 163–190 (2005). CrossRefGoogle Scholar
  3. 3.
    Conover, W.: Practical Nonparametric Statistics, 3rd edn. Wiley, New York (1999)Google Scholar
  4. 4.
    Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Systems 9(2), 115–148 (1995)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000). doi: 10.1007/3-540-45356-3_83 CrossRefGoogle Scholar
  6. 6.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Advanced Information and Knowledge Processing, pp. 105–145. Springer, London (2005)CrossRefGoogle Scholar
  7. 7.
    Durillo, J.J., Nebro, A.J.: Jmetal: a java framework for multi-objective optimization. Adv. Eng. Softw. 42, 760–771 (2011)CrossRefGoogle Scholar
  8. 8.
    Gonçalves, R., Almeida, C., Pavelski, L., Venske, S., Kuk, J., Pozo, A.: Adaptive Operator Selection in NSGA-III. In: To appear in Proceedings of Brazilian Conference on Intelligent Systems, BRACIS 2016 (2016)Google Scholar
  9. 9.
    Gong, W., Fialho, Á., Cai, Z., Li, H.: Adaptive strategy selection in differential evolution for numerical optimization: an empirical study. Inf. Sci. 181(24), 5364–5386 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Handl, J., Lovell, S.C., Knowles, J.: Investigations into the effect of multiobjectivization in protein structure prediction. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 702–711. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-87700-4_70 CrossRefGoogle Scholar
  11. 11.
    Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)CrossRefzbMATHGoogle Scholar
  12. 12.
    Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: a short review. In: Proceedings of 2008 IEEE Congress on Evolutionary Computation, pp. 2424–2431 (2008)Google Scholar
  13. 13.
    Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602–622 (2014)CrossRefGoogle Scholar
  14. 14.
    Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2015)CrossRefGoogle Scholar
  15. 15.
    Li, K., Fialho, Á., Kwong, S.: Multi-objective differential evolution with adaptive control of parameters and operators. In: International Conference on Learning and Intelligent Optimization, pp. 473–487 (2011)Google Scholar
  16. 16.
    Li, K., Fialho, A., Kwong, S., Zhang, Q.: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 18(1), 114–130 (2014)CrossRefGoogle Scholar
  17. 17.
    Lin, Q., Liu, Z., Yan, Q., Du, Z., Coello, C.A.C., Liang, Z., Wang, W., Chen, J.: Adaptive composite operator selection and parameter control for multiobjective evolutionary algorithm. Inf. Sci. 339, 332–352 (2016)CrossRefGoogle Scholar
  18. 18.
    MacKerell, A.D., Banavali, N., Foloppe, N.: Development and current status of the charmm force field for nucleic acids. Biopolymers 56(4), 257–265 (2000)CrossRefGoogle Scholar
  19. 19.
    Mkaouer, W., Kessentini, M., Shaout, A., Koligheu, P., Bechikh, S., Deb, K., Ouni, A.: Many-objective software remodularization using NSGA-III. ACM Trans. Softw. Eng. Methodo. 24(3), 17:1–17:45 (2015)CrossRefGoogle Scholar
  20. 20.
    Ponder, J.W.: Tinker: Software tools for molecular design. Washington University School of Medicine, Saint Louis, MO 3 (2004)Google Scholar
  21. 21.
    Seada, H., Deb, K.: U-NSGA-III: a unified evolutionary optimization procedure for single, multiple, and many objectives: proof-of-principle results. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 34–49. Springer, Cham (2015). doi: 10.1007/978-3-319-15892-1_3 Google Scholar
  22. 22.
    Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities. In: Conference on Genetic and Evolutionary Computation, pp. 1539–1546 (2005)Google Scholar
  24. 24.
    Tramontano, A.: Protein Structure Prediction: Concepts and Applications. Wiley, New Year (2006)Google Scholar
  25. 25.
    Venske, S.M., Gonçalves, R.A., Delgado, M.R.: ADEMO/D: multiobjective optimization by an adaptive differential evolution algorithm. Neurocomputing 127, 65–77 (2014)CrossRefGoogle Scholar
  26. 26.
    Yuan, Y., Xu, H., Wang, B.: An improved NSGA-III procedure for evolutionary many-objective optimization. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 661–668. ACM, New York (2014)Google Scholar
  27. 27.
    Yuan, Y., Xu, H., Wang, B.: An experimental investigation of variation operators in reference-point based many-objective optimization. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 775–782. ACM, New York (2015)Google Scholar
  28. 28.
    Zaki, M., Bystroff, C. (eds.): Protein Structure Prediction. Methods in Molecular Biology, vol. 413, 2nd edn. Humana Press/Springer, Heidelberg (2008)Google Scholar
  29. 29.
    Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Trans. Evol. Comput. 16(3), 442–446 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Computer Science Department - UNICENTROGuarapuavaBrazil
  2. 2.CPGEI/DAINF, UTFPRCuritibaBrazil

Personalised recommendations