A Fast Incremental BSP Tree Archive for Non-dominated Points

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10173)


Maintaining an archive of all non-dominated points is a standard task in multi-objective optimization. Sometimes it is sufficient to store all evaluated points and to obtain the non-dominated subset in a post-processing step. Alternatively the non-dominated set can be updated on the fly. While keeping track of many non-dominated points efficiently is easy for two objectives, we propose an efficient algorithm based on a binary space partitioning (BSP) tree for the general case of three or more objectives. Our analysis and our empirical results demonstrate the superiority of the method over the brute-force baseline method, as well as graceful scaling to large numbers of objectives.


Pareto Front Candidate Point Objective Vector Space Cell Covariance Matrix Adaptation Evolution Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational Geometry. Springer, Heidelberg (2000)CrossRefzbMATHGoogle Scholar
  2. 2.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Congress on Evolutionary Computation (CEC 2002), pp. 825–830. IEEE (2002)Google Scholar
  3. 3.
    Fieldsend, J.E., Everson, R.M., Singh, S.: Using unconstrained elite archives for multi-objective optimization. IEEE Trans. Evol. Comput. 7(3), 305–323 (2003)CrossRefGoogle Scholar
  4. 4.
    Fortin, F.A., Grenier, S., Parizeau, M.: Generalizing the improved run-time complexity algorithm for non-dominated sorting. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (2013)Google Scholar
  5. 5.
    Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evol. Comput. 15(1), 1–28 (2007)CrossRefGoogle Scholar
  6. 6.
    Igel, C., Heidrich-Meisner, V., Glasmachers, T.: Shark. J. Mach. Learn. Res. 9, 993–996 (2008)zbMATHGoogle Scholar
  7. 7.
    Jensen, M.T.: Reducing the run-time complexity of multiobjective EAs: the NSGA-II and other algorithms. IEEE Trans. Evol. Comput. 7(5), 503–515 (2003)CrossRefGoogle Scholar
  8. 8.
    Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for skyline queries. In: Proceedings of the 28th International Conference on Very Large Data Bases, VLDB Endowment, pp. 275–286 (2002)Google Scholar
  9. 9.
    Krause, O., Glasmachers, T., Hansen, N., Igel, C.: Unbounded population MO-CMA-ES for the bi-objective BBOB test suite. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (2016)Google Scholar
  10. 10.
    Kung, H.-T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors. J. ACM (JACM) 22(4), 469–476 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    López-Ibáñez, M., Knowles, J., Laumanns, M.: On sequential online archiving of objective vectors. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 46–60. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19893-9_4 CrossRefGoogle Scholar
  12. 12.
    Lukasiewycz, M., Glaß, M., Haubelt, C., Teich, J.: Symbolic archive representation for a fast nondominance test. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 111–125. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-70928-2_12 CrossRefGoogle Scholar
  13. 13.
    Mostaghim, S., Teich, J., Tyagi, A.: Comparison of data structures for storing pareto-sets in MOEAs. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC), vol. 1, pp. 843–848. IEEE (2002)Google Scholar
  14. 14.
    Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline queries. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, pp. 467–478. ACM (2003)Google Scholar
  15. 15.
    Robson, J.M.: The height of binary search trees. Aust. Comput. J. 11, 151–153 (1979)MathSciNetGoogle Scholar
  16. 16.
    Schütze, O.: A new data structure for the nondominance problem in multi-objective optimization. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 509–518. Springer, Heidelberg (2003). doi: 10.1007/3-540-36970-8_36 CrossRefGoogle Scholar
  17. 17.
    Voß, T., Hansen, N., Igel, C.: Improved step size adaptation for the MO-CMA-ES. In: 12th Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 487–494. ACM (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute for Neural ComputationRuhr-University BochumBochumGermany

Personalised recommendations