Advertisement

Peek – Shape – Grab: A Methodology in Three Stages for Approximating the Non-dominated Points of Multiobjective Discrete/Combinatorial Optimization Problems with a Multiobjective Metaheuristic

Conference paper
  • 1.8k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10173)

Abstract

The paper discusses on the role of components of multiobjective metaheuristics in the context of multiobjective discrete/combinatorial optimization. It suggests to separate in three stages the design of an operational solver for this class of optimization problems, featuring a methodology in this context. The arguments are illustrated using the knapsack problem as support, along numerical experiments.

Keywords

Multiobjective optimization Multiobjective metaheuristic Discrete and combinatorial problems Algorithmic design methodology 

Notes

Acknowledgment

I would like to thank Brice Chevalier, Quentin Delmée, Benjamin Martin, Olga Perederieiva, Sylvain Rosembly, and Jocelyn Willaime, master students in computer science, track “optimization in operations research” from the Université de Nantes (France) who participated to set up the software required for the production of the different cases reported in this paper. I would also thank Takfarinas Saber, doctoral student from University College Dublin (Eire), for the discussions we had on the MOMH that he develops. Last but not least, I would like to thank Dr. Anthony Przybylski, senior lecturer at the Université de Nantes (France) for the fruitful discussions on MOP and MOMH, and the co-supervisions of students we had during these past years.

References

  1. 1.
    Coello, C.A.C., Lamont, G.B. (eds.): Applications of Multi-objective Evolutionary Algorithms. World Scientific, Singapore (2004)zbMATHGoogle Scholar
  2. 2.
    Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley-Interscience Series in Systems and Optimization. Wiley, Chichester (2001)zbMATHGoogle Scholar
  3. 3.
    Delorme, X., Gandibleux, X., Degoutin, F.: Evolutionary, constructive and hybrid procedures for the bi-objective set packing problem. Eur. J. Oper. Res. 204(2), 206–217 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Adaptive “anytime” two-phase local search. In: Blum, C., Battiti, R. (eds.) Learning and Intelligent Optimization. LNCS, vol. 6073, pp. 52–67. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Ehrgott, M.: Multicriteria Optimization. Springer, New York (2005)zbMATHGoogle Scholar
  6. 6.
    Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spektrum 22, 425–460 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ehrgott, M., Gandibleux, X.: Bounds and bound sets for biobjective combinatorial optimization problems. In: Köksalan, M., Zionts, S. (eds.) Multiple Criteria Decision Making in the New Millennium. LNEMS, vol. 507, pp. 241–253. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Ehrgott, M., Gandibleux, X.: Approximative solution methods for multiobjective combinatorial optimization. Top 12(1), 1–63 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ehrgott, M., Gandibleux, X.: Bound sets for biobjective combinatorial optimization problems. Comput. Oper. Res. 34, 2674–2694 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Féo, T.A., Resende, M.G.C.: A probabilistic heuristic for a computationally difficult set covering problem. Oper. Res. Lett. 8(2), 67–71 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Féo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. Glob. Optim. 6(2), 109–133 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fonseca, C., Fleming, P.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, California, 1993. University of Illinois at Urbana-Champaign, pp. 416–423. Morgan Kaufman, San Francisco (1993)Google Scholar
  13. 13.
    Gandibleux, X., Chamayou, C.: Potential efficient solutions of a bi-objective telecommunication network expansion planning problem. In: The Seventh Metaheuristics International Conference, MIC2007, Montreal, Canada, 25–29 June 2007Google Scholar
  14. 14.
    Gandibleux, X., Katoh, N., Morita, H.: Evolutionary operators based on elite solutions for bi-objective combinatorial optimization. In: Coello, C.A.C., Lamont, G.B. (eds.) Applications of Multi-Objective Evolutionary Algorithms, vol. 1, Chap. 23, pp. 555–579. World Scientific (2004)Google Scholar
  15. 15.
    Gandibleux, X., Martin, B., Perederieieva, O., Rosembly, S.: Sur la résolution approchée en trois étapes du sac-à-dos bi-objectif unidimensionnel en variables binaires. In: ROADEF 2011 (12e congrès annuel de la société française de Recherche Opérationnelle et d’Aide à la Décision), Saint-Etienne, France, 2–4 mars 2011Google Scholar
  16. 16.
    Gandibleux, X., Morita, H., Katoh, N.: A genetic algorithm for 0–1 multiobjective knapsack problem. In: Proceedings of the International Conference on Nonlinear Analysis and Convex Analysis (NACA 1998), Niigata, Japan, 28–31 July 1998 (1998)Google Scholar
  17. 17.
    Gandibleux, X., Morita, H., Katoh, N.: Use of a genetic heritage for solving the assignment problem with two objectives. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 43–57. Springer, Heidelberg (2003). doi: 10.1007/3-540-36970-8_4 CrossRefGoogle Scholar
  18. 18.
    Haubelt, C., Gamenik, J., Teich, J.: Initial population construction for convergence improvement of MOEAs. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 191–205. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-31880-4_14 CrossRefGoogle Scholar
  19. 19.
    Ishibuchi, H., Kaige, S.: Comparison of multiobjective memetic algorithms on 0/1 knapsack problems. In: Proceedings of 2003 Genetic and Evolutionary Computation Conference Workshop Program, Chicago, USA, pp. 222–227 (2003)Google Scholar
  20. 20.
    jMetal: Problems included in jmetal. http://jmetal.sourceforge.net/problems.html. Accessed 28 Sep 2016
  21. 21.
    Lust, T., Teghem, J.: Two-phase pareto local search for the biobjective traveling salesman problem. J. Heuristics 16(3), 475–510 (2010)CrossRefzbMATHGoogle Scholar
  22. 22.
    Morita, H., Gandibleux, X., Katoh, N.: Experimental feedback on biobjective permutation problems solved with a population heuristic. Found. Comput. Decis. Sci. 26(1), 43–50 (2001)Google Scholar
  23. 23.
    Morita, H., Gandibleux, X., Katoh, N.: Experimental feedback on biobjective permutation scheduling problems solved with a population heuristic. Found. Comput. Decis. Sci. J. 26(1), 23–50 (2001)Google Scholar
  24. 24.
    Murata, T., Ishibuchi, H.: MOGA: multi-objective genetic algorithms. In: Proceedings of the 2nd IEEE International Conference on Evolutionary Computing, pp. 289–294 (1995)Google Scholar
  25. 25.
    Parragh, S.N., Doerner, K.F., Hartl, R.F., Gandibleux, X.: A heuristic two-phase solution approach for the multi-objective dial-a-ride problem. Networks 54(4), 227–242 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Pasia, J.M., Gandibleux, X., Doerner, K.F., Hartl, R.F.: Local search guided by path relinking and heuristic bounds. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 501–515. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-70928-2_39 CrossRefGoogle Scholar
  27. 27.
    Saber, T., Ventresque, A., Brandic, I., Thorburn, J., Murphy, L.: Towards a multi-objective vm reassignment for large decentralised data centres. In: 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC), pp. 65–74. IEEE (2015)Google Scholar
  28. 28.
    Saber, T., Ventresque, A., Gandibleux, X., Murphy, L.: GeNePi: a multi-objective machine reassignment algorithm for data centres. In: Blesa, M.J., Blum, C., Voß, S. (eds.) HM 2014. LNCS, vol. 8457, pp. 115–129. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-07644-7_9 Google Scholar
  29. 29.
    Saber, T., Ventresque, A., Marques-Silva, J., Thorburn, J., Murphy, L.: MILP for the multi-objective VM reassignment problem. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 41–48. IEEE (2015)Google Scholar
  30. 30.
    David Schaffer, J.: Multiple objective optimization with vector evaluated genetic algorithms. In: Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 93–100. Lawrence Erlbaum (1985)Google Scholar
  31. 31.
    Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)CrossRefGoogle Scholar
  32. 32.
    Villarreal, B., Karwan, M.H.: Multicriteria integer programming: a (hybrid) dynamic programming recursive approach. Math. Program. 21(1), 204–223 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zitzler, E., Laumanns, M.: Test problem suite. http://www.tik.ee.ethz.ch/sop/download/supplementary/testProblemSuite/. Accessed 29 Sept 2016
  34. 34.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto evolutionary algorithm. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Sciences and Technologies, IRCCyN UMR CNRS 6597Université de NantesNantes Cedex 03France

Personalised recommendations