Viral Infections of the Central Nervous System

  • Izelle SmutsEmail author
  • Gregory V. Lamb


Viral-mediated central nervous system (CNS) disease is a complex spectrum of clinical syndromes that result from viral tropism and individual immune responses and genetic susceptibility of patients. The epidemiology of the pathogens is constantly influenced by the availability, or non-availability, of health care services; preventative strategies; and the process of globalization, with rapid movement of people, animals and products. It is further complicated by natural disasters, wars and changes in lifestyle.

The effects of the neurotropic viruses are discussed against the background of the epidemiology. The pathogenesis is a chain of events with the point of departure when the virus enters the body to spread and reach the different sites of the CNS. The blood-brain barrier and blood-cerebrospinal fluid barrier are then overcome by captivating mechanisms. Once the different viruses have settled at the preferred site or sites, and have sidestepped the initial immune surveillance, the phases of injury commence. The cytopathic effect of the viruses elicits a para- and post-infectious inflammatory response and a vicious circle of continued damage, viral entry and inflammation results in a process not merely of inflammation, but of intense inflammation.

The different clinical syndromes are then identifiable and should be interpreted against their own specific and appropriate epidemiological backgrounds. Clinicians face the challenge of problematic management decisions while awaiting results on gravely ill patients and differential diagnostic considerations have to be taken into account. Establishing a diagnosis is a two-tier process: first it requires the integration of cerebrospinal fluid findings, imaging results, electrophysiological studies, serology and ancillary blood tests, for example full blood count, liver function tests and other appropriate microbiological investigations, and then these should be correlated with the clinical condition of the patient. Treatment should be initiated as soon as possible.

General treatment principles for stabilizing and maintaining vital functions are crucial and empiric treatment should be initiated as soon as possible. This usually includes a broad-spectrum antibiotic, such as third-generation cephalosporin and acyclovir. As soon as specific etiologies have been excluded antibiotics can be stopped. The use of acyclovir is discussed. In the last section of the chapter specific characteristics of the neurotropic viral families are summarized.


Human Immunodeficiency Virus Herpes Simplex Virus West Nile Virus Lumbar Puncture Central Nervous System Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sejvar J. Neuroepidemiology and the epidemiology of viral infections of the nervous system. Handb Clin Neurol. 2014;123:67–87. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Swanson PA, McGavern DB. Viral diseases of the central nervous system. Curr Opin Virol. 2015;11:44–54. Google Scholar
  3. 3.
    Dahm T, Rudolph H, Schwerk C, Schroten H, Tenenbaum T. Neuroinvasion and inflammation in viral central nervous system infections. Mediators Inflamm. 2016;2016:8562805. Google Scholar
  4. 4.
    Sejvar JJ, Kohl KS, Bilynsky R, Blumberg D, Cvetkovich T, Galama J, et al. Encephalitis, myelitis, and acute disseminated encephalomyelitis (ADEM): case definitions and guidelines for collection, analysis, and presentation of immunization safety data. Vaccine. 2007;25(31):5771–92. CrossRefPubMedGoogle Scholar
  5. 5.
    Britton PN, Dale RC, Booy R, Jones CA. Acute encephalitis in children: progress and priorities from an Australasian perspective. J Paediatr Child Health. 2015;51(2):147–58.CrossRefPubMedGoogle Scholar
  6. 6.
    Rice P. Viral meningitis and encephalitis. Medicine. 2013;41(12):678–82.CrossRefGoogle Scholar
  7. 7.
    Glaser CA, Honarmand S, Anderson LJ, Schnurr DP, Forghani B, Cossen CK, et al. Beyond viruses: clinical profiles and etiologies associated with encephalitis. Clin Infect Dis. 2006;43(12):1565–77.CrossRefPubMedGoogle Scholar
  8. 8.
    Granerod J, Ambrose HE, Davies NW, Clewley JP, Walsh AL, Morgan D, et al. Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. Lancet Infect Dis. 2010;10(12):835–44. CrossRefPubMedGoogle Scholar
  9. 9.
    Venkatesan A, Tunkel AR, Bloch KC, Lauring AS, Sejvar J, Bitnun A, et al. Case definitions, diagnostic algorithms, and priorities in encephalitis: consensus statement of the international encephalitis consortium. Clin Infect Dis. 2013;57(8):1114–28. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kneen R, Michael BD, Menson E, Mehta B, Easton A, Hemingway C, et al. Management of suspected viral encephalitis in children. J Infect. 2012;64(5):449–77.CrossRefPubMedGoogle Scholar
  11. 11.
    Zueter AM, Zaiter A. Infectious meningitis. Clin Microbiol Newsl. 2015;37(6):43–51.Google Scholar
  12. 12.
    Berger JR, Sabet A. Infectious myelopathies. Semin Neurol. 2002;22(2):133–42. CrossRefPubMedGoogle Scholar
  13. 13.
    Thompson C, Kneen R, Riordan A, Kelly D, Pollard AJ. Encephalitis in children. Arch Dis Child. 2012;97(2):150–61. CrossRefPubMedGoogle Scholar
  14. 14.
    Graus F, Titulaer MJ, Balu R, Benseler S, Bien CG, Cellucci T, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016;15(4):391–404.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Krupp LB, Tardieu M, Amato MP, Banwell B, Chitnis T, Dale RC, et al. International pediatric multiple sclerosis study group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions. Mult Scler. 2013;19(10):1261–7. CrossRefPubMedGoogle Scholar
  16. 16.
    Armangue T, Leypoldt F, Dalmau J. Autoimmune encephalitis as differential diagnosis of infectious encephalitis. Curr Opin Neurol. 2014;27(3):361–8.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Leypoldt F, Armangue T, Dalmau J. Autoimmune encephalopathies. Ann N Y Acad Sci. 2015;1338:94–114. CrossRefPubMedGoogle Scholar
  18. 18.
    Gable MS, Sheriff H, Dalmau J, Tilley DH, Glaser CA. The frequency of autoimmune N-methyl-D-aspartate receptor encephalitis surpasses that of individual viral etiologies in young individuals enrolled in the California Encephalitis Project. Clin Infect Dis. 2012;54(7):899–904. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Armangue T, Leypoldt F, Malaga I, Raspall-Chaure M, Marti I, Nichter C, et al. Herpes simplex virus encephalitis is a trigger of brain autoimmunity. Ann Neurol. 2014;75(2):317–23. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Reznicek JE, Bloch KC. Diagnostic testing for encephalitis, Part I. Clin Microbiol Newsl. 2010;32(3):17–23.CrossRefGoogle Scholar
  21. 21.
    Britton PN, Khoury L, Booy R, Wood N, Jones CA. Encephalitis in Australian children: contemporary trends in hospitalisation. Arch Dis Child. 2016;101(1):51–6. CrossRefPubMedGoogle Scholar
  22. 22.
    Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–41. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wood H. Neuroimmunology: uncovering the secrets of the ‘brain drain’-the CNS lymphatic system is finally revealed. Nat Rev Neurol. 2015;11(7):367. CrossRefPubMedGoogle Scholar
  24. 24.
    Berg BO. Principles of child neurology. New York: McGraw-Hill; 1996.Google Scholar
  25. 25.
    Swaiman KF. Swaiman’s pediatric neurology: principles and practice. 5th ed. Elsevier Saunders; 2012.Google Scholar
  26. 26.
    Karande S, Muranjan M, Mani RS, Anand AM, Amoghimath R, Sankhe S, et al. Atypical rabies encephalitis in a six-year-old boy: clinical, radiological, and laboratory findings. Int J Infect Dis. 2015;36:1–3. CrossRefPubMedGoogle Scholar
  27. 27.
    Ramdass P, Mullick S, Farber HF. Viral skin diseases. Prim Care. 2015;42(4):517–67. CrossRefPubMedGoogle Scholar
  28. 28.
    Admani S, Jinna S, Friedlander SF, Sloan B. Cutaneous infectious diseases: kids are not just little people. Clin Dermatol. 2015;33(6):657–71. CrossRefPubMedGoogle Scholar
  29. 29.
    Stone RC, Micali GA, Schwartz RA. Roseola infantum and its causal human herpesviruses. Int J Dermatol. 2014;53(4):397–403. CrossRefPubMedGoogle Scholar
  30. 30.
    Pankuweit S, Klingel K. Viral myocarditis: from experimental models to molecular diagnosis in patients. Heart Fail Rev. 2013;18(6):683–702. CrossRefPubMedGoogle Scholar
  31. 31.
    Morfopoulou S, Brown JR, Davies EG, Anderson G, Virasami A, Qasim W, et al. Human Coronavirus OC43 associated with fatal encephalitis. N Engl J Med. 2016;375(5):497–8. CrossRefPubMedGoogle Scholar
  32. 32.
    Boyles TH, Bamford C, Bateman K, Blumberg L, Dramowski A, Karstaedt A, et al. Guidelines for the management of acute meningitis in children and adults in South Africa. S Afr J Epidemiol Infect. 2013;28(1):5–15.Google Scholar
  33. 33.
    Ziadie M, Wians FH. A Guide to the interpretation of CSF indices. Lab Med. 2005;36(9):558–62. CrossRefGoogle Scholar
  34. 34.
    Deisenhammer F, Bartos A, Egg R, Gilhus NE, Giovannoni G, Rauer S, et al. Guidelines on routine cerebrospinal fluid analysis: report from an EFNS task force. Eur J Neurol. 2006;13(9):913–22.CrossRefPubMedGoogle Scholar
  35. 35.
    Solomon T, Hart IJ, Beeching NJ. Viral encephalitis: a clinician’s guide. Pract Neurol. 2007;7(5):288–305. CrossRefPubMedGoogle Scholar
  36. 36.
    Nigrovic LE, Shah SS, Neuman MI. Correction of cerebrospinal fluid protein for the presence of red blood cells in children with a traumatic lumbar puncture. J Pediatr. 2011;159(1):158–9. Google Scholar
  37. 37.
    Davies NW, Brown LJ, Gonde J, Irish D, Robinson RO, Swan AV, et al. Factors influencing PCR detection of viruses in cerebrospinal fluid of patients with suspected CNS infections. J Neurol Neurosurg Psychiatry. 2005;76(1):82–7. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Schloss L, van Loon AM, Cinque P, Cleator G, Echevarria JM, Falk KI, et al. An international external quality assessment of nucleic acid amplification of herpes simplex virus. J Clin Virol. 2003;28(2):175–85.CrossRefPubMedGoogle Scholar
  39. 39.
    Michael BD, Griffiths MJ, Granerod J, Brown D, Davies NW, Borrow R, et al. Characteristic cytokine and chemokine profiles in encephalitis of infectious, immune-mediated, and unknown aetiology. PLoS One. 2016;11(1). Google Scholar
  40. 40.
    Sherwood JA, Brittain DC, Howard JJ, Oliver J. Antibody and viral nucleic acid testing of serum and cerebrospinal fluid for diagnosis of eastern equine encephalitis. J Clin Microbiol. 2015;53(8):2768–72. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Granerod J, Davies NW, Mukonoweshuro W, Mehta A, Das K, Lim M, et al. Neuroimaging in encephalitis: analysis of imaging findings and interobserver agreement. Clin Radiol. 2016;71(10):1050–8. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Mohammad SS, Soe SM, Pillai SC, Nosadini M, Barnes EH, Gill D, et al. Etiological associations and outcome predictors of acute electroencephalography in childhood encephalitis. Clin Neurophysiol. 2016;127(10):3217–24. CrossRefPubMedGoogle Scholar
  43. 43.
    Sutter R, Kaplan PW, Cervenka MC, Thakur KT, Asemota AO, Venkatesan A, et al. Electroencephalography for diagnosis and prognosis of acute encephalitis. Clin Neurophysiol. 2015;126(8):1524–31. CrossRefPubMedGoogle Scholar
  44. 44.
    Kumar G, Kalita J, Misra UK. Raised intracranial pressure in acute viral encephalitis. Clin Neurol Neurosurg. 2009;111(5):399–406. CrossRefPubMedGoogle Scholar
  45. 45.
    Martinez-Torres F, Menon S, Pritsch M, Victor N, Jenetzky E, Jensen K, et al. Protocol for German trial of Acyclovir and corticosteroids in Herpes-simplex-virus-encephalitis (GACHE): a multicenter, multinational, randomized, double-blind, placebo-controlled German, Austrian and Dutch trial [ISRCTN45122933]. BMC Neurol. 2008;8:40. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Whitley RJ. Herpes Simplex Virus Infections of the central nervous system. Continuum. 2015;21(6):1704–13.PubMedGoogle Scholar
  47. 47.
    Kimberlin DW, Lin CY, Jacobs RF, Powell DA, Frenkel LM, Gruber WC, et al. Natural history of neonatal herpes simplex virus infections in the acyclovir era. Pediatrics. 2001;108(2):223–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Kimura H, Aso K, Kuzushima K, Hanada N, Shibata M, Morishima T. Relapse of herpes simplex encephalitis in children. Pediatrics. 1992;89(5 Pt 1):891–4.PubMedGoogle Scholar
  49. 49.
    De Tiege X, De Laet C, Mazoin N, Christophe C, Mewasingh LD, Wetzburger C, et al. Postinfectious immune-mediated encephalitis after pediatric herpes simplex encephalitis. Brain Dev. 2005;27(4):304–7. CrossRefPubMedGoogle Scholar
  50. 50.
    Tavis JE, Wang H, Tollefson AE, Ying B, Korom M, Cheng X, et al. Inhibitors of nucleotidyltransferase superfamily enzymes suppress herpes simplex virus replication. Antimicrob Agents Chemother. 2014;58(12):7451–61. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    White MK, Kaminski R, Wollebo H, Hu W, Malcolm T, Khalili K. Gene editing for treatment of neurological infections. Neurotherapeutics. 2016;13(3):547–54. Google Scholar
  52. 52.
    Venkatesan A. Epidemiology and outcomes of acute encephalitis. Curr Opin Neurol. 2015;28(3):277–82. CrossRefPubMedGoogle Scholar
  53. 53.
    Rao S, Elkon B, Flett KB, Moss AF, Bernard TJ, Stroud B, et al. Long-Term outcomes and risk factors associated with acute encephalitis in children. J Pediatric Infect Dis Soc. 2015. Google Scholar
  54. 54.
    Khandaker G, Jung J, Britton PN, King C, Yin JK, Jones CA. Long-term outcomes of infective encephalitis in children: a systematic review and meta-analysis. Dev Med Child Neurol. 2016;58(11):1108–15. CrossRefPubMedGoogle Scholar
  55. 55.
    Brenton JN, Kim J, Schwartz RH. Approach to the management of pediatric-onset anti-N-methyl-D-aspartate (Anti-NMDA) receptor encephalitis: a case series. J Child Neurol. 2016;31(9):1150–5. Google Scholar
  56. 56.
    Rismanchi N, Gold JJ, Sattar S, Glaser C, Sheriff H, Proudfoot J, et al. Neurological outcomes after presumed childhood encephalitis. Pediatr Neurol. 2015;53(3):200–6. CrossRefPubMedGoogle Scholar
  57. 57.
    Aryee A, Thwaites G. Viral encephalitis in travellers. Clin Med. 2015;15(1):86–90. CrossRefGoogle Scholar
  58. 58.
    Londono-Renteria B, Troupin A, Colpitts TM. Arbovirosis and potential transmission blocking vaccines. Parasit Vectors. 2016;9:516. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Cao L, Fu S, Gao X, Li M, Cui S, Li X, et al. Low protective efficacy of the current Japanese encephalitis vaccine against the emerging genotype 5 Japanese encephalitis virus. PLoS Negl Trop Dis. 2016;10(5):1–12. CrossRefGoogle Scholar
  60. 60.
    Majid A, Galetta SL, Sweeney CJ, Robinson C, Mahalingam R, Smith J, et al. Epstein-Barr virus myeloradiculitis and encephalomyeloradiculitis. Brain. 2002;125(Pt 1):159–65.CrossRefPubMedGoogle Scholar
  61. 61.
    Jackson AC. Herpes simplex encephalitis. In: Medlink Neurology. Medlink Corporation, San Diego. 2016. Accessed 9 Oct 2016.
  62. 62.
    Schleede L, Bueter W, Baumgartner-Sigl S, Opladen T, Weigt-Usinger K, Stephan S, et al. Pediatric herpes simplex virus encephalitis: a retrospective multicenter experience. J Child Neurol. 2013;28(3):321–31. CrossRefPubMedGoogle Scholar
  63. 63.
    De Tiege X, Rozenberg F, Heron B. The spectrum of herpes simplex encephalitis in children. Eur J Paediatr Neurol. 2008;12(2):72–81. CrossRefPubMedGoogle Scholar
  64. 64.
    Whitley RJ, Soong SJ, Linneman Jr C, Liu C, Pazin G, Alford CA. Herpes simplex encephalitis. clinical assessment. JAMA. 1982;247(3):317–20.CrossRefPubMedGoogle Scholar
  65. 65.
    Teixeira MM, Vilela MC, Soriani FM, Rodrigues DH, Teixeira AL. Using intravital microscopy to study the role of chemokines during infection and inflammation in the central nervous system. J Neuroimmunol. 2010;224(1–2):62–5. CrossRefPubMedGoogle Scholar
  66. 66.
    Carr DJ, Ash J, Lane TE, Kuziel WA. Abnormal immune response of CCR5-deficient mice to ocular infection with herpes simplex virus type 1. J Gen Virol. 2006;87(Pt 3):489–99. CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Martins TB, Rose JW, Jaskowski TD, Wilson AR, Husebye D, Seraj HS, et al. Analysis of proinflammatory and anti-inflammatory cytokine serum concentrations in patients with multiple sclerosis by using a multiplexed immunoassay. Am J Clin Pathol. 2011;136(5):696–704. CrossRefPubMedGoogle Scholar
  68. 68.
    To TM, Soldatos A, Sheriff H, Schmid DS, Espinosa N, Cosentino G, et al. Insights into pediatric herpes simplex encephalitis from a cohort of 21 children from the California Encephalitis Project, 1998-2011. Pediatr Infect Dis J. 2014;33(12):1287–8. CrossRefPubMedGoogle Scholar
  69. 69.
    De Tiege X, Rozenberg F, Burlot K, Gaudelus J, Ponsot G, Heron B. Herpes simplex encephalitis: diagnostic problems and late relapse. Dev Med Child Neurol. 2006;48(1):60–3. CrossRefPubMedGoogle Scholar
  70. 70.
    Gutman LT, Wilfert CM, Eppes S. Herpes simplex virus encephalitis in children: analysis of cerebrospinal fluid and progressive neurodevelopmental deterioration. J Infect Dis. 1986;154(3):415–21.CrossRefPubMedGoogle Scholar
  71. 71.
    Cliffe AR, Arbuckle JH, Vogel JL, Geden MJ, Rothbart SB, Cusack CL, et al. Neuronal stress pathway mediating a histone methyl/phospho switch is required for herpes simplex virus reactivation. Cell Host Microbe. 2015;18(6):649–58. CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Lakeman FD, Whitley RJ. Diagnosis of herpes simplex encephalitis: application of polymerase chain reaction to cerebrospinal fluid from brain-biopsied patients and correlation with disease. J Infect Dis. 1995;171(4):857–63.CrossRefPubMedGoogle Scholar
  73. 73.
    De Tiege X, Rozenberg F, Des Portes V, Lobut JB, Lebon P, Ponsot G, et al. Herpes simplex encephalitis relapses in children: differentiation of two neurologic entities. Neurology. 2003;61(2):241–3.CrossRefPubMedGoogle Scholar
  74. 74.
    Chelse AB, Epstein LG. Autoimmune post-herpes simplex encephalitis. Pediatr Neurol Briefs. 2016;30(3):23.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Ludlow M, Kortekaas J, Herden C, Hoffmann B, Tappe D, Trebst C, et al. Neurotropic virus infections as the cause of immediate and delayed neuropathology. Acta Neuropathol. 2016;131(2):159–84.CrossRefPubMedGoogle Scholar
  76. 76.
    Ongradi J, Ablashi DV, Yoshikawa T, Stercz B, Ogata M. Roseolovirus-associated encephalitis in immunocompetent and immunocompromised individuals. J Neurovirol. 2016.Google Scholar
  77. 77.
    Mohammadpour Touserkani F, Gainza-Lein M, Jafarpour S, Brinegar K, Kapur K, Loddenkemper T. HHV-6 and seizures: a systematic review and meta-analysis. J Med Virol. 2016.Google Scholar
  78. 78.
    Granerod J, Cunningham R, Zuckerman M, Mutton K, Davies NW, Walsh AL, et al. Causality in acute encephalitis: defining aetiologies. Epidemiol Infect. 2010;138(6):783–800. CrossRefPubMedGoogle Scholar
  79. 79.
    Dewhurst S. Human herpesvirus type 6 and human herpesvirus type 7 infections of the central nervous system. Herpes. 2004;11(Suppl 2):105a–11a.PubMedGoogle Scholar
  80. 80.
    Reznicek JE, Bloch KC. Diagnostic testing for encephalitis, Part II. Clin Microbiol Newsl. 2010;32(4):25–31.CrossRefGoogle Scholar
  81. 81.
    Griffin DE. Measles virus and the nervous system. Handb Clin Neurol. 2014;123:577–90. CrossRefPubMedGoogle Scholar
  82. 82.
    Vollbach S, Muller A, Drexler JF, Simon A, Drosten C, Eis-Hubinger AM, et al. Prevalence, type and concentration of human enterovirus and parechovirus in cerebrospinal fluid samples of pediatric patients over a 10-year period: a retrospective study. Virol J. 2015;12:199.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Paediatrics and Child HealthUniversity of Pretoria, Steve Biko Academic HospitalPretoriaSouth Africa

Personalised recommendations