Skip to main content

F4/80 as a Major Macrophage Marker: The Case of the Peritoneum and Spleen

  • Chapter
  • First Online:
Macrophages

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 62))

Abstract

Tissue macrophages are a heterogeneous cell population residing in all body tissues that contribute to the maintenance of homeostasis and trigger immune activation in response to injurious stimuli. This heterogeneity may be associated with tissue-specific functions; however, the presence of distinct macrophage populations within the same microenvironment indicates that macrophage heterogeneity may also be influenced outside of tissue specialization. The F4/80 molecule was established as a unique marker of murine macrophages when a monoclonal antibody was found to recognize an antigen exclusively expressed by these cells. However, recent research has shown that F4/80 is expressed by other immune cells and is not equivalently expressed across tissue-specific macrophage lineages, including those residing in the same microenvironment, such as the peritoneum and spleen. In this context, two murine macrophage subtypes with distinct F4/80 expression patterns were recently found to coexist in the peritoneum, termed large peritoneal macrophages (LPMs) and small peritoneal macrophages (SPMs). However, the presence of phenotypic and functional heterogeneous macrophage subpopulations in the spleen was already known. Thus, although F4/80 surface expression continues to be the best method to identify tissue macrophages, additional molecules must also be examined to distinguish these cells from other immune cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623

    Article  CAS  PubMed  Google Scholar 

  • Austyn JM, Gordon S (1981) F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol 11(10):805–815

    Article  CAS  PubMed  Google Scholar 

  • Bockaert J, Pin JP (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J 18(7):1723–1729. doi:10.1093/emboj/18.7.1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borges da Silva H, Fonseca R, Cassado Ados A, Machado de Salles E, de Menezes MN, Langhorne J, Perez KR, Cuccovia IM, Ryffel B, Barreto VM, Marinho CR, Boscardin SB, Alvarez JM, D’Imperio-Lima MR, Tadokoro CE (2015a) In vivo approaches reveal a key role for DCs in CD4+ T cell activation and parasite clearance during the acute phase of experimental blood-stage malaria. PLoS Pathog 11(2):e1004598. doi:10.1371/journal.ppat.1004598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borges da Silva H, Fonseca R, Pereira RM, Cassado Ados A, Alvarez JM, D’Imperio Lima MR (2015b) Splenic macrophage subsets and their function during blood-borne infections. Front Immunol 6:480. doi:10.3389/fimmu.2015.00480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cain DW, O’Koren EG, Kan MJ, Womble M, Sempowski GD, Hopper K, Gunn MD, Kelsoe G (2013) Identification of a tissue-specific, C/EBPbeta-dependent pathway of differentiation for murine peritoneal macrophages. J Immunol 191(9):4665–4675. doi:10.4049/jimmunol.1300581

    Article  CAS  PubMed  Google Scholar 

  • Campbell ID, Bork P (1993) Epidermal growth factor-like modules. Curr Opin Struct Biol 3(3):385–392

    Article  CAS  Google Scholar 

  • Cassado Ados A, de Albuquerque JA, Sardinha LR, Buzzo Cde L, Faustino L, Nascimento R, Ghosn EE, Lima MR, Alvarez JM, Bortoluci KR (2011) Cellular renewal and improvement of local cell effector activity in peritoneal cavity in response to infectious stimuli. PLoS One 6(7):e22141. doi:10.1371/journal.pone.0022141

    Article  PubMed  CAS  Google Scholar 

  • Cassado Ados A, D’Imperio Lima MR, Bortoluci KR (2015) Revisiting mouse peritoneal macrophages: heterogeneity, development, and function. Front Immunol 6:225. doi:10.3389/fimmu.2015.00225

    PubMed  Google Scholar 

  • Chen Y, Wermeling F, Sundqvist J, Jonsson AB, Tryggvason K, Pikkarainen T, Karlsson MC (2010) A regulatory role for macrophage class A scavenger receptors in TLR4-mediated LPS responses. Eur J Immunol 40(5):1451–1460. doi:10.1002/eji.200939891

    Article  CAS  PubMed  Google Scholar 

  • Cohn ZA, Hirsch JG (1960a) The influence of phagocytosis on the intracellular distribution of granule-associated components of polymorphonuclear leucocytes. J Exp Med 112:1015–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohn ZA, Hirsch JG (1960b) The isolation and properties of the specific cytoplasmic granules of rabbit polymorphonuclear leucocytes. J Exp Med 112:983–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies LC, Rosas M, Smith PJ, Fraser DJ, Jones SA, Taylor PR (2011) A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation. Eur J Immunol 41(8):2155–2164. doi:10.1002/eji.201141817

    Article  CAS  PubMed  Google Scholar 

  • Davies LC, Jenkins SJ, Allen JE, Taylor PR (2013) Tissue-resident macrophages. Nat Immunol 14(10):986–995. doi:10.1038/ni.2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Jesus M, Park CG, Su Y, Goldman DL, Steinman RM, Casadevall A (2008) Spleen deposition of Cryptococcus neoformans capsular glucuronoxylomannan in rodents occurs in red pulp macrophages and not marginal zone macrophages expressing the C-type lectin SIGN-R1. Med Mycol 46(2):153–162. doi:10.1080/13693780701747182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • den Haan JM, Kraal G (2012) Innate immune functions of macrophage subpopulations in the spleen. J Innate Immun 4(5–6):437–445. doi:10.1159/000335216

    Article  Google Scholar 

  • den Haan JM, Mebius RE, Kraal G (2012) Stromal cells of the mouse spleen. Front Immunol 3:201. doi:10.3389/fimmu.2012.00201

    Article  Google Scholar 

  • Elomaa O, Kangas M, Sahlberg C, Tuukkanen J, Sormunen R, Liakka A, Thesleff I, Kraal G, Tryggvason K (1995) Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 80(4):603–609

    Article  CAS  PubMed  Google Scholar 

  • Engwerda CR, Ato M, Cotterell SE, Mynott TL, Tschannerl A, Gorak-Stolinska PM, Kaye PM (2002) A role for tumor necrosis factor-alpha in remodeling the splenic marginal zone during Leishmania donovani infection. Am J Pathol 161(2):429–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezekowitz RA, Gordon S (1982) Down-regulation of mannosyl receptor-mediated endocytosis and antigen F4/80 in bacillus Calmette-Guerin-activated mouse macrophages. Role of T lymphocytes and lymphokines. J Exp Med 155(6):1623–1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezekowitz RA, Austyn J, Stahl PD, Gordon S (1981) Surface properties of bacillus Calmette-Guerin-activated mouse macrophages. Reduced expression of mannose-specific endocytosis, Fc receptors, and antigen F4/80 accompanies induction of Ia. J Exp Med 154(1):60–76

    Article  CAS  PubMed  Google Scholar 

  • Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S, Aderem A (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432(7019):917–921. doi:10.1038/nature03104

    Article  CAS  PubMed  Google Scholar 

  • Fritsche G, Dlaska M, Barton H, Theurl I, Garimorth K, Weiss G (2003) Nramp1 functionality increases inducible nitric oxide synthase transcription via stimulation of IFN regulatory factor 1 expression. J Immunol 171(4):1994–1998

    Article  CAS  PubMed  Google Scholar 

  • Gautier EL, Chow A, Spanbroek R, Marcelin G, Greter M, Jakubzick C, Bogunovic M, Leboeuf M, van Rooijen N, Habenicht AJ, Merad M, Randolph GJ (2012) Systemic analysis of PPARgamma in mouse macrophage populations reveals marked diversity in expression with critical roles in resolution of inflammation and airway immunity. J Immunol 189(5):2614–2624. doi:10.4049/jimmunol.1200495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geijtenbeek TB, Groot PC, Nolte MA, van Vliet SJ, Gangaram-Panday ST, van Duijnhoven GC, Kraal G, van Oosterhout AJ, van Kooyk Y (2002) Marginal zone macrophages express a murine homologue of DC-SIGN that captures blood-borne antigens in vivo. Blood 100(8):2908–2916. doi:10.1182/blood-2002-04-1044

    Article  CAS  PubMed  Google Scholar 

  • Geissmann F, Mass E (2016) A stratified myeloid system, the challenge of understanding macrophage diversity. Semin Immunol 27(6):353–356. doi:10.1016/j.smim.2016.03.016

    Article  PubMed Central  Google Scholar 

  • Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ (2010) Unravelling mononuclear phagocyte heterogeneity. Nat Rev 10(6):453–460

    CAS  Google Scholar 

  • Ghosn EE, Cassado AA, Govoni GR, Fukuhara T, Yang Y, Monack DM, Bortoluci KR, Almeida SR, Herzenberg LA, Herzenberg LA (2010) Two physically, functionally, and developmentally distinct peritoneal macrophage subsets. Proc Natl Acad Sci USA 107(6):2568–2573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev 14(6):392–404. doi:10.1038/nri3671

    CAS  Google Scholar 

  • Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science (New York, NY) 330(6005):841–845. doi:10.1126/science.1194637

    Article  CAS  Google Scholar 

  • Gordon S (2016) Elie Metchnikoff, the man and the myth. J Innate Immun 8(3):223–227. doi:10.1159/000443331

    Article  CAS  PubMed  Google Scholar 

  • Gordon S, Hirsch S (1982) Differentiation antigens and macrophage heterogeneity. Adv Exp Med Biol 155:391–400

    Article  CAS  PubMed  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev 5(12):953–964

    CAS  Google Scholar 

  • Gordon S, Keshav S, Chung LP (1988) Mononuclear phagocytes: tissue distribution and functional heterogeneity. Curr Opin Immunol 1(1):26–35

    Article  CAS  PubMed  Google Scholar 

  • Gordon S, Lawson L, Rabinowitz S, Crocker PR, Morris L, Perry VH (1992) Antigen markers of macrophage differentiation in murine tissues. Curr Top Microbiol Immunol 181:1–37

    CAS  PubMed  Google Scholar 

  • Gordon S, Pluddemann A, Martinez Estrada F (2014) Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol Rev 262(1):36–55. doi:10.1111/imr.12223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorgani NN, Ma Y, Clark HF (2008) Gene signatures reflect the marked heterogeneity of tissue-resident macrophages. Immunol Cell Biol 86(3):246–254

    Article  CAS  PubMed  Google Scholar 

  • Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU, Segura E, Tussiwand R, Yona S (2014) Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev 14(8):571–578. doi:10.1038/nri3712

    CAS  Google Scholar 

  • Hamann J, Vogel B, van Schijndel GM, van Lier RA (1996) The seven-span transmembrane receptor CD97 has a cellular ligand (CD55, DAF). J Exp Med 184(3):1185–1189

    Article  CAS  PubMed  Google Scholar 

  • Hara Y, Caspi RR, Wiggert B, Dorf M, Streilein JW (1992) Analysis of an in vitro-generated signal that induces systemic immune deviation similar to that elicited by antigen injected into the anterior chamber of the eye. J Immunol 149(5):1531–1538

    CAS  PubMed  Google Scholar 

  • Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, Becker CD, See P, Price J, Lucas D, Greter M, Mortha A, Boyer SW, Forsberg EC, Tanaka M, van Rooijen N, Garcia-Sastre A, Stanley ER, Ginhoux F, Frenette PS, Merad M (2013) Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38(4):792–804. doi:10.1016/j.immuni.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  • Heikema AP, Bergman MP, Richards H, Crocker PR, Gilbert M, Samsom JN, van Wamel WJ, Endtz HP, van Belkum A (2010) Characterization of the specific interaction between sialoadhesin and sialylated Campylobacter jejuni lipooligosaccharides. Infect Immun 78(7):3237–3246. doi:10.1128/IAI.01273-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemmi H, Idoyaga J, Suda K, Suda N, Kennedy K, Noda M, Aderem A, Steinman RM (2009) A new triggering receptor expressed on myeloid cells (Trem) family member, Trem-like 4, binds to dead cells and is a DNAX activation protein 12-linked marker for subsets of mouse macrophages and dendritic cells. J Immunol 182(3):1278–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch JG (1959) Immunity to infectious diseases: review of some concepts of Metchnikoff. Bacteriol Rev 23(2):48–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch JG, Cohn ZA (1960) Degranulation of polymorphonuclear leucocytes following phagocytosis of microorganisms. J Exp Med 112:1005–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hume DA (2006) The mononuclear phagocyte system. Curr Opin Immunol 18(1):49–53

    Article  CAS  PubMed  Google Scholar 

  • Hume DA (2008) Differentiation and heterogeneity in the mononuclear phagocyte system. Mucosal Immunol 1(6):432–441

    Article  CAS  PubMed  Google Scholar 

  • Hume DA, Gordon S (1983) Mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. Identification of resident macrophages in renal medullary and cortical interstitium and the juxtaglomerular complex. J Exp Med 157(5):1704–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hume DA, Perry VH, Gordon S (1983a) Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. J Cell Biol 97(1):253–257

    Article  CAS  PubMed  Google Scholar 

  • Hume DA, Robinson AP, MacPherson GG, Gordon S (1983b) The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. Relationship between macrophages, Langerhans cells, reticular cells, and dendritic cells in lymphoid and hematopoietic organs. J Exp Med 158(5):1522–1536

    Article  CAS  PubMed  Google Scholar 

  • Hume DA, Halpin D, Charlton H, Gordon S (1984a) The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80: macrophages of endocrine organs. Proc Natl Acad Sci USA 81(13):4174–4177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hume DA, Loutit JF, Gordon S (1984b) The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80: macrophages of bone and associated connective tissue. J Cell Sci 66:189–194

    CAS  PubMed  Google Scholar 

  • Hume DA, Perry VH, Gordon S (1984c) The mononuclear phagocyte system of the mouse defined by immunohistochemical localisation of antigen F4/80: macrophages associated with epithelia. Anat Rec 210(3):503–512

    Article  CAS  PubMed  Google Scholar 

  • Hume DA, Ross IL, Himes SR, Sasmono RT, Wells CA, Ravasi T (2002) The mononuclear phagocyte system revisited. J Leukoc Biol 72(4):621–627

    CAS  PubMed  Google Scholar 

  • Jones C, Virji M, Crocker PR (2003) Recognition of sialylated meningococcal lipopolysaccharide by siglecs expressed on myeloid cells leads to enhanced bacterial uptake. Mol Microbiol 49(5):1213–1225

    Article  CAS  PubMed  Google Scholar 

  • Kang YS, Kim JY, Bruening SA, Pack M, Charalambous A, Pritsker A, Moran TM, Loeffler JM, Steinman RM, Park CG (2004) The C-type lectin SIGN-R1 mediates uptake of the capsular polysaccharide of Streptococcus pneumoniae in the marginal zone of mouse spleen. Proc Natl Acad Sci USA 101(1):215–220. doi:10.1073/pnas.0307124101

    Article  CAS  PubMed  Google Scholar 

  • Kirby AC, Beattie L, Maroof A, van Rooijen N, Kaye PM (2009) SIGNR1-negative red pulp macrophages protect against acute streptococcal sepsis after Leishmania donovani-induced loss of marginal zone macrophages. Am J Pathol 175(3):1107–1115. doi:10.2353/ajpath.2009.090258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohyama M, Ise W, Edelson BT, Wilker PR, Hildner K, Mejia C, Frazier WA, Murphy TL, Murphy KM (2009) Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature 457(7227):318–321. doi:10.1038/nature07472

    Article  CAS  PubMed  Google Scholar 

  • Koppel EA, Saeland E, de Cooker DJ, van Kooyk Y, Geijtenbeek TB (2005) DC-SIGN specifically recognizes Streptococcus pneumoniae serotypes 3 and 14. Immunobiology 210(2–4):203–210. doi:10.1016/j.imbio.2005.05.014

    Article  CAS  PubMed  Google Scholar 

  • Koppel EA, Litjens M, van den Berg VC, van Kooyk Y, Geijtenbeek TB (2008) Interaction of SIGNR1 expressed by marginal zone macrophages with marginal zone B cells is essential to early IgM responses against Streptococcus pneumoniae. Mol Immunol 45(10):2881–2887. doi:10.1016/j.molimm.2008.01.032

    Article  CAS  PubMed  Google Scholar 

  • Kovtunovych G, Eckhaus MA, Ghosh MC, Ollivierre-Wilson H, Rouault TA (2010) Dysfunction of the heme recycling system in heme oxygenase 1-deficient mice: effects on macrophage viability and tissue iron distribution. Blood 116(26):6054–6062. doi:10.1182/blood-2010-03-272138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraal G, Janse M (1986) Marginal metallophilic cells of the mouse spleen identified by a monoclonal antibody. Immunology 58(4):665–669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman HJ, Law SK, Moestrup SK (2001) Identification of the haemoglobin scavenger receptor. Nature 409(6817):198–201. doi:10.1038/35051594

    Article  CAS  PubMed  Google Scholar 

  • Kurotaki D, Kon S, Bae K, Ito K, Matsui Y, Nakayama Y, Kanayama M, Kimura C, Narita Y, Nishimura T, Iwabuchi K, Mack M, van Rooijen N, Sakaguchi S, Uede T, Morimoto J (2011) CSF-1-dependent red pulp macrophages regulate CD4 T cell responses. J Immunol 186(4):2229–2237. doi:10.4049/jimmunol.1001345

    Article  CAS  PubMed  Google Scholar 

  • Kurotaki D, Uede T, Tamura T (2015) Functions and development of red pulp macrophages. Microbiol Immunol 59(2):55–62. doi:10.1111/1348-0421.12228

    Article  CAS  PubMed  Google Scholar 

  • Lanoue A, Clatworthy MR, Smith P, Green S, Townsend MJ, Jolin HE, Smith KG, Fallon PG, McKenzie AN (2004) SIGN-R1 contributes to protection against lethal pneumococcal infection in mice. J Exp Med 200(11):1383–1393. doi:10.1084/jem.20040795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leibovich SJ, Ross R (1975) The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am J Pathol 78(1):71–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin HH, Faunce DE, Stacey M, Terajewicz A, Nakamura T, Zhang-Hoover J, Kerley M, Mucenski ML, Gordon S, Stein-Streilein J (2005) The macrophage F4/80 receptor is required for the induction of antigen-specific efferent regulatory T cells in peripheral tolerance. J Exp Med 201(10):1615–1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackay F, Majeau GR, Lawton P, Hochman PS, Browning JL (1997) Lymphotoxin but not tumor necrosis factor functions to maintain splenic architecture and humoral responsiveness in adult mice. Eur J Immunol 27:2033–2042

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686

    Article  CAS  PubMed  Google Scholar 

  • Maus U, Herold S, Muth H, Maus R, Ermert L, Ermert M, Weissmann N, Rosseau S, Seeger W, Grimminger F, Lohmeyer J (2001) Monocytes recruited into the alveolar air space of mice show a monocytic phenotype but upregulate CD14. Am J Physiol 280(1):L58–L68

    CAS  Google Scholar 

  • McGaha TL, Chen Y, Ravishankar B, van Rooijen N, Karlsson MC (2011) Marginal zone macrophages suppress innate and adaptive immunity to apoptotic cells in the spleen. Blood 117(20):5403–5412. doi:10.1182/blood-2010-11-320028

    Article  CAS  PubMed  Google Scholar 

  • McGarry MP, Stewart CC (1991) Murine eosinophil granulocytes bind the murine macrophage-monocyte specific monoclonal antibody F4/80. J Leukoc Biol 50(5):471–478

    CAS  PubMed  Google Scholar 

  • McKnight AJ, Gordon S (1996) EGF-TM7: a novel subfamily of seven-transmembrane-region leukocyte cell-surface molecules. Immunol Today 17(6):283–287

    Article  CAS  PubMed  Google Scholar 

  • McKnight AJ, Gordon S (1998) The EGF-TM7 family: unusual structures at the leukocyte surface. J Leukoc Biol 63(3):271–280

    CAS  PubMed  Google Scholar 

  • Mebius RE, Kraal G (2005) Structure and function of the spleen. Nat Rev 5(8):606–616. doi:10.1038/nri1669

    CAS  Google Scholar 

  • Miyake Y, Asano K, Kaise H, Uemura M, Nakayama M, Tanaka M (2007) Critical role of macrophages in the marginal zone in the suppression of immune responses to apoptotic cell-associated antigens. J Clin Invest 117(8):2268–2278. doi:10.1172/JCI31990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monteiro VG, Lobato CS, Silva AR, Medina DV, de Oliveira MA, Seabra SH, de Souza W, DaMatta RA (2005) Increased association of Trypanosoma cruzi with sialoadhesin positive mice macrophages. Parasitol Res 97(5):380–385. doi:10.1007/s00436-005-1460-1

    Article  PubMed  Google Scholar 

  • Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73(2):209–212

    Article  CAS  PubMed  Google Scholar 

  • Movita D, Kreefft K, Biesta P, van Oudenaren A, Leenen PJ, Janssen HL, Boonstra A (2012) Kupffer cells express a unique combination of phenotypic and functional characteristics compared with splenic and peritoneal macrophages. J Leukoc Biol 92(4):723–733. doi:10.1189/jlb.1111566

    Article  CAS  PubMed  Google Scholar 

  • Nolte MA, Arens R, Kraus M, van Oers MH, Kraal G, van Lier RA, Mebius RE (2004) B cells are crucial for both development and maintenance of the splenic marginal zone. J Immunol 172(6):3620–3627

    Article  CAS  PubMed  Google Scholar 

  • Nussenzweig MC, Steinman RM, Unkeless JC, Witmer MD, Gutchinov B, Cohn ZA (1981) Studies of the cell surface of mouse dendritic cells and other leukocytes. J Exp Med 154(1):168–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okabe Y, Medzhitov R (2014) Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 157(4):832–844. doi:10.1016/j.cell.2014.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3(9):639–650. doi:10.1038/nrm908

    Article  CAS  PubMed  Google Scholar 

  • Pluddemann A, Mukhopadhyay S, Sankala M, Savino S, Pizza M, Rappuoli R, Tryggvason K, Gordon S (2009) SR-A, MARCO and TLRs differentially recognise selected surface proteins from Neisseria meningitidis: an example of fine specificity in microbial ligand recognition by innate immune receptors. J Innate Immun 1(2):153–163. doi:10.1159/000155227

    Article  PubMed  CAS  Google Scholar 

  • Polverini PJ, Cotran PS, Gimbrone MA Jr, Unanue ER (1977) Activated macrophages induce vascular proliferation. Nature 269(5631):804–806

    Article  CAS  PubMed  Google Scholar 

  • Ram S, Lewis LA, Rice PA (2010) Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin Microbiol Rev 23(4):740–780. doi:10.1128/CMR.00048-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosas M, Davies LC, Giles PJ, Liao CT, Kharfan B, Stone TC, O’Donnell VB, Fraser DJ, Jones SA, Taylor PR (2014) The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal. Science (New York, NY) 344(6184):645–648. doi:10.1126/science.1251414

    Article  CAS  Google Scholar 

  • Ross GD (2000) Regulation of the adhesion versus cytotoxic functions of the Mac-1/CR3/alphaMbeta2-integrin glycoprotein. Crit Rev Immunol 20(3):197–222

    Article  CAS  PubMed  Google Scholar 

  • Salcedo SP, Noursadeghi M, Cohen J, Holden DW (2001) Intracellular replication of Salmonella typhimurium strains in specific subsets of splenic macrophages in vivo. Cell Microbiol 3(9):587–597

    Article  CAS  PubMed  Google Scholar 

  • Schaller E, Macfarlane AJ, Rupec RA, Gordon S, McKnight AJ, Pfeffer K (2002) Inactivation of the F4/80 glycoprotein in the mouse germ line. Mol Cell Biol 22(22):8035–8043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt EE, MacDonald IC, Groom AC (1993) Comparative aspects of splenic microcirculatory pathways in mammals: the region bordering the white pulp. Scanning Microsc 7(2):613–628

    CAS  PubMed  Google Scholar 

  • Schnitzer B, Sodeman T, Mead ML, Contacos PG (1972) Pitting function of the spleen in malaria: ultrastructural observations. Science (New York, NY) 177:175–177

    Article  CAS  Google Scholar 

  • Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science (New York, NY) 336(6077):86–90. doi:10.1126/science.1219179

    Article  CAS  Google Scholar 

  • Seiler P, Aichele P, Odermatt B, Hengartner H, Zinkernagel RM, Schwendener RA (1997) Crucial role of marginal zone macrophages and marginal zone metallophils in the clearance of lymphocytic choriomeningitis virus infection. Eur J Immunol 27(10):2626–2633. doi:10.1002/eji.1830271023

    Article  CAS  PubMed  Google Scholar 

  • Shortman K, Liu YJ (2002) Mouse and human dendritic cell subtypes. Nat Rev 2(3):151–161

    Article  CAS  Google Scholar 

  • Stacey M, Lin HH, Hilyard KL, Gordon S, McKnight AJ (2001) Human epidermal growth factor (EGF) module-containing mucin-like hormone receptor 3 is a new member of the EGF-TM7 family that recognizes a ligand on human macrophages and activated neutrophils. J Biol Chem 276(22):18863–18870. doi:10.1074/jbc.M101147200

    Article  CAS  PubMed  Google Scholar 

  • Stacey M, Chang GW, Sanos SL, Chittenden LR, Stubbs L, Gordon S, Lin HH (2002) EMR4, a novel epidermal growth factor (EGF)-TM7 molecule up-regulated in activated mouse macrophages, binds to a putative cellular ligand on B lymphoma cell line A20. J Biol Chem 277(32):29283–29293. doi:10.1074/jbc.M204306200

    Article  CAS  PubMed  Google Scholar 

  • Stacey M, Chang GW, Davies JQ, Kwakkenbos MJ, Sanderson RD, Hamann J, Gordon S, Lin HH (2003) The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. Blood 102(8):2916–2924. doi:10.1182/blood-2002-11-3540

    Article  CAS  PubMed  Google Scholar 

  • Steinman RM, Cohn ZA (1973) Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137(5):1142–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR, Libby P, Weissleder R, Pittet MJ (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science (New York, NY) 325(5940):612–616. doi:10.1126/science.1175202

    Article  CAS  Google Scholar 

  • Taylor PR, Brown GD, Geldhof AB, Martinez-Pomares L, Gordon S (2003) Pattern recognition receptors and differentiation antigens define murine myeloid cell heterogeneity ex vivo. Eur J Immunol 33(8):2090–2097

    Article  CAS  PubMed  Google Scholar 

  • Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S (2005a) Macrophage receptors and immune recognition. Annu Rev Immunol 23:901–944

    Article  CAS  PubMed  Google Scholar 

  • Taylor PR, Reid DM, Heinsbroek SE, Brown GD, Gordon S, Wong SY (2005b) Dectin-2 is predominantly myeloid restricted and exhibits unique activation-dependent expression on maturing inflammatory monocytes elicited in vivo. Eur J Immunol 35(7):2163–2174

    Article  CAS  PubMed  Google Scholar 

  • Unanue ER (1997) Studies in listeriosis show the strong symbiosis between the innate cellular system and the T-cell response. Immunol Rev 158:11–25

    Article  CAS  PubMed  Google Scholar 

  • van Furth R (1970) Origin and kinetics of monocytes and macrophages. Semin Hematol 7(2):125–141

    PubMed  Google Scholar 

  • van Furth R (1980) The mononuclear phagocyte system. Verh Dtsch Ges Pathol 64:1–11

    PubMed  Google Scholar 

  • van Furth R (1981) Current view of the mononuclear phagocyte system. Haematol Blood Transfus 27:3–10

    PubMed  Google Scholar 

  • van Furth R (1985) Monocyte production during inflammation. Comp Immunol Microbiol Infect Dis 8(2):205–211

    Article  PubMed  Google Scholar 

  • van Furth R, Cohn ZA (1968) The origin and kinetics of mononuclear phagocytes. J Exp Med 128(3):415–435

    Article  PubMed  PubMed Central  Google Scholar 

  • van Furth R, Diesselhoff-Den Dulk MM (1970) The kinetics of promonocytes and monocytes in the bone marrow. J Exp Med 132(4):813–828

    Article  PubMed  PubMed Central  Google Scholar 

  • van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL (1972) The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ 46(6):845–852

    PubMed  PubMed Central  Google Scholar 

  • Van Furth R, Diesselhoff-den Dulk MC, Mattie H (1973) Quantitative study on the production and kinetics of mononuclear phagocytes during an acute inflammatory reaction. J Exp Med 138(6):1314–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanderheijden N, Delputte PL, Favoreel HW, Vandekerckhove J, Van Damme J, van Woensel PA, Nauwynck HJ (2003) Involvement of sialoadhesin in entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages. J Virol 77(15):8207–8215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal S, Tremblay ML, Govoni G, Gauthier S, Sebastiani G, Malo D, Skamene E, Olivier M, Jothy S, Gros P (1995) The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med 182:655–666

    Article  CAS  PubMed  Google Scholar 

  • Villacres-Eriksson M (1995) Antigen presentation by naive macrophages, dendritic cells and B cells to primed T lymphocytes and their cytokine production following exposure to immunostimulating complexes. Clin Exp Immunol 102(1):46–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkman A (1970) The origin and fate of the monocyte. Ser Haematol 3(2):62–92

    CAS  PubMed  Google Scholar 

  • Warschkau H, Kiderlen AF (1999) A monoclonal antibody directed against the murine macrophage surface molecule F4/80 modulates natural immune response to Listeria monocytogenes. J Immunol 163(6):3409–3416

    CAS  PubMed  Google Scholar 

  • Werb Z, Gordon S (1975) Secretion of a specific collagenase by stimulated macrophages. J Exp Med 142(2):346–360

    Article  CAS  PubMed  Google Scholar 

  • Wermeling F, Chen Y, Pikkarainen T, Scheynius A, Winqvist O, Izui S, Ravetch JV, Tryggvason K, Karlsson MC (2007) Class A scavenger receptors regulate tolerance against apoptotic cells, and autoantibodies against these receptors are predictive of systemic lupus. J Exp Med 204(10):2259–2265. doi:10.1084/jem.20070600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilbanks GA, Streilein JW (1991) Studies on the induction of anterior chamber-associated immune deviation (ACAID). 1. Evidence that an antigen-specific, ACAID-inducing, cell-associated signal exists in the peripheral blood. J Immunol 146(8):2610–2617

    CAS  PubMed  Google Scholar 

  • Wilbanks GA, Mammolenti M, Streilein JW (1991) Studies on the induction of anterior chamber-associated immune deviation (ACAID). II. Eye-derived cells participate in generating blood-borne signals that induce ACAID. J Immunol 146(9):3018–3024

    CAS  PubMed  Google Scholar 

  • Wong K, Valdez PA, Tan C, Yeh S, Hongo JA, Ouyang W (2010) Phosphatidylserine receptor Tim-4 is essential for the maintenance of the homeostatic state of resident peritoneal macrophages. Proc Natl Acad Sci USA 107(19):8712–8717. doi:10.1073/pnas.0910929107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharin A, Hume DA, Perlman H, Malissen B, Zelzer E, Jung S (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38(1):79–91. doi:10.1016/j.immuni.2012.12.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—Brazil) Proc 2013/15741-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra dos Anjos Cassado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

dos Anjos Cassado, A. (2017). F4/80 as a Major Macrophage Marker: The Case of the Peritoneum and Spleen. In: Kloc, M. (eds) Macrophages. Results and Problems in Cell Differentiation, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-319-54090-0_7

Download citation

Publish with us

Policies and ethics