Skip to main content

Mesenchymal Stem Cells Direct the Immunological Fate of Macrophages

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 62))

Abstract

Mesenchymal stem cells (MSC) are multipotent stem cells with a broad well-described immunosuppressive potential. They are able to modulate both the innate and the adaptive immune response. Particularly, MSC are able to regulate the phenotype and function of macrophages that are critical for different biological processes including wound healing, inflammation, pathogenesis of several autoimmune diseases, and tumor growth. These multifunctional roles of macrophages are due to their high plasticity, which enable them to adopt different phenotypes such as a pro-inflammatory M1 and anti-inflammatory M2 phenotype. MSC promote macrophage differentiation toward an M2-like phenotype with a high tissue remodeling potential and anti-inflammatory activity but also a pro-tumorigenic function. MSC regulatory effect on macrophages is mediated through the secretion of different immunomodulatory molecules such as PGE2, IL1RA, and IL-6. Moreover, the presence of macrophages in damaged tissue and inflammation is essential for MSC to exert their therapeutic function. In this chapter, we discuss how the interplay between macrophages and MSC mutually modulates their phenotypes and functions, orchestrates tissue repair, and controls inflammation during autoimmunity and tumor growth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abumaree MH, Al Jumah MA, Kalionis B, Jawdat D, Al Khaldi A, Abomaray FM, Fatani AS, Chamley LW, Knawy BA (2013) Human placental mesenchymal stem cells (pMSC) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Rev 9(5):620–641. doi:10.1007/s12015-013-9455-2

    Article  CAS  PubMed  Google Scholar 

  • Ahsan MH, Gill AF, Alvarez X, Lackner AA, Veazey RS (2013) Kinetics of liver macrophages (Kupffer cells) in SIV-infected macaques. Virology 446(1–2):77–85. doi:10.1016/j.virol.2013.07.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akamatsu Y, Ohkohchi N, Doi H, Satomi S (2003) Effect of elimination of donor Kupffer cells and/or recipient macrophages on acute rejection in liver transplantation. Hepato-Gastroenterology 50(52):1105–1110

    PubMed  Google Scholar 

  • Anderson P, Souza-Moreira L, Morell M, Caro M, O’Valle F, Gonzalez-Rey E, Delgado M (2013) Adipose-derived mesenchymal stromal cells induce immunomodulatory macrophages which protect from experimental colitis and sepsis. Gut 62(8):1131–1141. doi:10.1136/gutjnl-2012-302152

    Article  CAS  PubMed  Google Scholar 

  • Arminan A, Gandia C, Garcia-Verdugo JM, Lledo E, Trigueros C, Ruiz-Sauri A, Minana MD, Solves P, Paya R, Montero JA, Sepulveda P (2010) Mesenchymal stem cells provide better results than hematopoietic precursors for the treatment of myocardial infarction. J Am Coll Cardiol 55(20):2244–2253. doi:10.1016/j.jacc.2009.08.092

    Article  PubMed  Google Scholar 

  • Cahill EF, Tobin LM, Carty F, Mahon BP, English K (2015) Jagged-1 is required for the expansion of CD4+ CD25+ FoxP3+ regulatory T cells and tolerogenic dendritic cells by murine mesenchymal stromal cells. Stem Cell Res Therapy 6:19. doi:10.1186/s13287-015-0021-5

    Article  Google Scholar 

  • Cao X, Han ZB, Zhao H, Liu Q (2014) Transplantation of mesenchymal stem cells recruits trophic macrophages to induce pancreatic beta cell regeneration in diabetic mice. Int J Biochem Cell Biol 53:372–379. doi:10.1016/j.biocel.2014.06.003

    Article  CAS  PubMed  Google Scholar 

  • Chazaud B (2014) Macrophages: supportive cells for tissue repair and regeneration. Immunobiology 219(3):172–178. doi:10.1016/j.imbio.2013.09.001

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ (2011) Anti-inflammatory protein TSG-6 secreted by activated MSC attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappaB signaling in resident macrophages. Blood 118(2):330–338. doi:10.1182/blood-2010-12-327353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dayan V, Yannarelli G, Billia F, Filomeno P, Wang XH, Davies JE, Keating A (2011) Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction. Basic Res Cardiol 106(6):1299–1310. doi:10.1007/s00395-011-0221-9

    Article  CAS  PubMed  Google Scholar 

  • Djouad F, Bouffi C, Ghannam S, Noel D, Jorgensen C (2009) Mesenchymal stem cells: innovative therapeutic tools for rheumatic diseases. Nat Rev Rheumatol 5(7):392–399. doi:10.1038/nrrheum.2009.104

    Article  CAS  PubMed  Google Scholar 

  • Djouad F, Charbonnier LM, Bouffi C, Louis-Plence P, Bony C, Apparailly F, Cantos C, Jorgensen C, Noel D (2007) Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 25(8):2025–2032. doi:10.1634/stemcells.2006-0548

    Article  CAS  PubMed  Google Scholar 

  • Djouad F, Mrugala D, Noel D, Jorgensen C (2006) Engineered mesenchymal stem cells for cartilage repair. Regen Med 1(4):529–537. doi:10.2217/17460751.1.4.529

    Article  CAS  PubMed  Google Scholar 

  • Eggenhofer E, Hoogduijn MJ (2012) Mesenchymal stem cell-educated macrophages. Transplant Res 1(1):12. doi:10.1186/2047-1440-1-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • English K, Ryan JM, Tobin L, Murphy MJ, Barry FP, Mahon BP (2009) Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(High) forkhead box P3+ regulatory T cells. Clin Exp Immunol 156(1):149–160. doi:10.1111/j.1365-2249.2009.03874.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garimella MG, Kour S, Piprode V, Mittal M, Kumar A, Rani L, Pote ST, Mishra GC, Chattopadhyay N, Wani MR (2015) Adipose-derived mesenchymal stem cells prevent systemic bone loss in collagen-induced arthritis. J Immunol 195(11):5136–5148. doi:10.4049/jimmunol.1500332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glenn JD, Whartenby KA (2014) Mesenchymal stem cells: emerging mechanisms of immunomodulation and therapy. World J Stem Cells 6(5):526–539. doi:10.4252/wjsc.v6.i5.526

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez MA, Gonzalez-Rey E, Rico L, Buscher D, Delgado M (2009) Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum 60(4):1006–1019. doi:10.1002/art.24405

    Article  CAS  PubMed  Google Scholar 

  • Hamilton JA, Filonzi EL, Ianches G (1993) Regulation of macrophage colony-stimulating factor (M-CSF) production in cultured human synovial fibroblasts. Growth Factors 9(2):157–165

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Qin C, Zheng G, Lai D, Tao H, Zhang Y, Qiu G, Ge M, Huang L, Chen L, Cheng B, Shu Q, Xu J (2016) Mesenchymal stem cell-educated macrophages ameliorate LPS-induced systemic response. Mediat Inflamm 2016:3735452. doi:10.1155/2016/3735452

    Google Scholar 

  • Jackson WM, Nesti LJ, Tuan RS (2012) Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells. Stem Cells Transl Med 1(1):44–50. doi:10.5966/sctm.2011-0024

    Article  CAS  PubMed  Google Scholar 

  • Janossy G, Panayi G, Duke O, Bofill M, Poulter LW, Goldstein G (1981) Rheumatoid arthritis: a disease of T-lymphocyte/macrophage immunoregulation. Lancet 2(8251):839–842

    Article  CAS  PubMed  Google Scholar 

  • Jia XH, Feng GW, Wang ZL, Du Y, Shen C, Hui H, Peng D, Li ZJ, Kong DL, Tian J (2016) Activation of mesenchymal stem cells by macrophages promotes tumor progression through immune suppressive effects. Oncotarget 7(15):20934-20944. doi:10.18632/oncotarget.8064

    Google Scholar 

  • Jou IM, Lin CF, Tsai KJ, Wei SJ (2013) Macrophage-mediated inflammatory disorders. Mediators Inflamm 2013:316482. doi:10.1155/2013/316482

    Article  PubMed  PubMed Central  Google Scholar 

  • Kennedy A, Fearon U, Veale DJ, Godson C (2011) Macrophages in synovial inflammation. Front Immunol 2:52. doi:10.3389/fimmu.2011.00052

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37(12):1445–1453. doi:10.1016/j.exphem.2009.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SW, Lee DW, Yu LH, Zhang HZ, Kim CE, Kim JM, Park TH, Cha KS, Seo SY, Roh MS, Lee KC, Jung JS, Kim MH (2012) Mesenchymal stem cells overexpressing GCP-2 improve heart function through enhanced angiogenic properties in a myocardial infarction model. Cardiovasc Res 95(4):495–506. doi:10.1093/cvr/cvs224

    Article  CAS  PubMed  Google Scholar 

  • Ko JH, Lee HJ, Jeong HJ, Kim MK, Wee WR, Yoon SO, Choi H, Prockop DJ, Oh JY (2016) Mesenchymal stem/stromal cells precondition lung monocytes/macrophages to produce tolerance against allo- and autoimmunity in the eye. Proc Natl Acad Sci USA 113(1):158–163. doi:10.1073/pnas.1522905113

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Tsunematsu T, Yamada A, Arakaki R, Saito M, Otsuka K, Kujiraoka S, Ushio A, Kurosawa M, Kudo Y, Ishimaru N (2016) Acceleration of tumor growth due to dysfunction in M1 macrophages and enhanced angiogenesis in an animal model of autoimmune disease. Lab Invest 96(4):468–480. doi:10.1038/labinvest.2015.166

    Article  CAS  PubMed  Google Scholar 

  • Lamagna C, Aurrand-Lions M, Imhof BA (2006) Dual role of macrophages in tumor growth and angiogenesis. J Leukoc Biol 80(4):705–713. doi:10.1189/jlb.1105656

    Article  CAS  PubMed  Google Scholar 

  • Le Blanc K, Ringden O (2007) Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 262(5):509–525. doi:10.1111/j.1365-2796.2007.01844.x

    Article  CAS  PubMed  Google Scholar 

  • Lee KC, Lin HC, Huang YH, Hung SC (2015) Allo-transplantation of mesenchymal stem cells attenuates hepatic injury through IL1Ra dependent macrophage switch in a mouse model of liver disease. J Hepatol 63(6):1405–1412. doi:10.1016/j.jhep.2015.07.035

    Article  CAS  PubMed  Google Scholar 

  • Liotta F, Angeli R, Cosmi L, Fili L, Manuelli C, Frosali F, Mazzinghi B, Maggi L, Pasini A, Lisi V, Santarlasci V, Consoloni L, Angelotti ML, Romagnani P, Parronchi P, Krampera M, Maggi E, Romagnani S, Annunziato F (2008) Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells 26(1):279–289. doi:10.1634/stemcells.2007-0454

    Article  CAS  PubMed  Google Scholar 

  • Luz-Crawford P, Djouad F, Toupet K, Bony C, Franquesa M, Hoogduijn MJ, Jorgensen C, Noel D (2015) Mesenchymal stem cell-derived IL1RA promotes macrophage polarization and inhibits B cell differentiation. Stem Cells. doi:10.1002/stem.2254

    Google Scholar 

  • Luz-Crawford P, Kurte M, Bravo-Alegria J, Contreras R, Nova-Lamperti E, Tejedor G, Noel D, Jorgensen C, Figueroa F, Djouad F, Carrion F (2013) Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res Therapy 4(3):65. doi:10.1186/scrt216

    Article  CAS  Google Scholar 

  • Luz-Crawford P, Noel D, Fernandez X, Khoury M, Figueroa F, Carrion F, Jorgensen C, Djouad F (2012) Mesenchymal stem cells repress Th17 molecular program through the PD-1 pathway. PLoS One 7(9):e45272. doi:10.1371/journal.pone.0045272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maggini J, Mirkin G, Bognanni I, Holmberg J, Piazzon IM, Nepomnaschy I, Costa H, Canones C, Raiden S, Vermeulen M, Geffner JR (2010) Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One 5(2):e9252. doi:10.1371/journal.pone.0009252

    Article  PubMed  PubMed Central  Google Scholar 

  • Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229(2):176–185. doi:10.1002/path.4133

    Article  CAS  PubMed  Google Scholar 

  • Mathew E, Brannon AL, Del Vecchio A, Garcia PE, Penny MK, Kane KT, Vinta A, Buckanovich RJ, di Magliano MP (2016) Mesenchymal stem cells promote pancreatic tumor growth by inducing alternative polarization of macrophages. Neoplasia 18(3):142–151. doi:10.1016/j.neo.2016.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Movita D, Kreefft K, Biesta P, van Oudenaren A, Leenen PJ, Janssen HL, Boonstra A (2012) Kupffer cells express a unique combination of phenotypic and functional characteristics compared with splenic and peritoneal macrophages. J Leukoc Biol 92(4):723–733. doi:10.1189/jlb.1111566

    Article  CAS  PubMed  Google Scholar 

  • Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15(1):42–49. doi:10.1038/nm.1905

    Article  CAS  PubMed  Google Scholar 

  • Novak ML, Koh TJ (2013) Macrophage phenotypes during tissue repair. J Leukoc Biol 93(6):875–881. doi:10.1189/jlb.1012512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K, Phinney DG (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA 104(26):11002–11007. doi:10.1073/pnas.0704421104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren G, Zhao X, Wang Y, Zhang X, Chen X, Xu C, Yuan ZR, Roberts AI, Zhang L, Zheng B, Wen T, Han Y, Rabson AB, Tischfield JA, Shao C, Shi Y (2012) CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFalpha. Cell Stem Cell 11(6):812–824. doi:10.1016/j.stem.2012.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz M, Cosenza S, Maumus M, Jorgensen C, Noel D (2016) Therapeutic application of mesenchymal stem cells in osteoarthritis. Expert Opin Biol Ther 16(1):33–42. doi:10.1517/14712598.2016.1093108

    Article  CAS  PubMed  Google Scholar 

  • Shigeyama Y, Pap T, Kunzler P, Simmen BR, Gay RE, Gay S (2000) Expression of osteoclast differentiation factor in rheumatoid arthritis. Arthritis Rheum 43(11):2523–2530. doi:10.1002/1529-0131(200011)43:11<2523::AID-ANR20>3.0.CO;2-Z

    Article  CAS  PubMed  Google Scholar 

  • Singer NG, Caplan AI (2011) Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol 6:457–478. doi:10.1146/annurev-pathol-011110-130230

    Article  CAS  PubMed  Google Scholar 

  • Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86(5):1065–1073. doi:10.1189/jlb.0609385

    Article  CAS  PubMed  Google Scholar 

  • Teitelbaum SL (2000) Osteoclasts, integrins, and osteoporosis. J Bone Miner Metab 18(6):344–349

    Article  CAS  PubMed  Google Scholar 

  • Torihashi S, Ho M, Kawakubo Y, Komatsu K, Nagai M, Hirayama Y, Kawabata Y, Takenaka-Ninagawa N, Wanachewin O, Zhuo L, Kimata K (2015) Acute and temporal expression of tumor necrosis factor (TNF)-alpha-stimulated gene 6 product, TSG6, in mesenchymal stem cells creates microenvironments required for their successful transplantation into muscle tissue. J Biol Chem 290(37):22771–22781. doi:10.1074/jbc.M114.629774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uccelli A, de Rosbo NK (2015) The immunomodulatory function of mesenchymal stem cells: mode of action and pathways. Ann N Y Acad Sci 1351:114–126. doi:10.1111/nyas.12815

    Article  PubMed  Google Scholar 

  • Udalova IA, Mantovani A, Feldmann M (2016) Macrophage heterogeneity in the context of rheumatoid arthritis. Nat Rev Rheumatol 12(8):472–485. doi:10.1038/nrrheum.2016.91

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Zhang G, Wang Y, Liu T, Zhang Y, An Y, Li Y (2015) Crosstalk of mesenchymal stem cells and macrophages promotes cardiac muscle repair. Int J Biochem Cell Biol 58:53–61. doi:10.1016/j.biocel.2014.11.003

    Article  CAS  PubMed  Google Scholar 

  • Wise AF, Williams TM, Kiewiet MB, Payne NL, Siatskas C, Samuel CS, Ricardo SD (2014) Human mesenchymal stem cells alter macrophage phenotype and promote regeneration via homing to the kidney following ischemia-reperfusion injury. Am J Physiol Renal Physiol 306(10):F1222–F1235. doi:10.1152/ajprenal.00675.2013

    Article  CAS  PubMed  Google Scholar 

  • Wong CP, Bray TM, Ho E (2009) Induction of proinflammatory response in prostate cancer epithelial cells by activated macrophages. Cancer Lett 276(1):38–46. doi:10.1016/j.canlet.2008.10.025

    Article  CAS  PubMed  Google Scholar 

  • Wynn TA, Vannella KM (2016) Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44(3):450–462. doi:10.1016/j.immuni.2016.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada K, Uchiyama A, Uehara A, Perera B, Ogino S, Yokoyama Y, Takeuchi Y, Udey MC, Ishikawa O, Motegi S (2016) MFG-E8 drives melanoma growth by stimulating mesenchymal stromal cell-induced angiogenesis and M2 polarization of tumor-associated macrophages. Cancer Res 76(14):4283–4292. doi:10.1158/0008-5472.CAN-15-2812

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Wen Z, Li Y, Chen B, Yu T, Liu L, Zhang J, Ma Y, Xiao S, Ding L, Li L, Huang Z (2014) Interleukin-10 attenuation of collagen-induced arthritis is associated with suppression of interleukin-17 and retinoid-related orphan receptor gammat production in macrophages and repression of classically activated macrophages. Arthritis Res Therapy 16(2):R96. doi:10.1186/ar4544

    Article  Google Scholar 

  • You Y, Zhang J, Gong J, Chen Y, Li Y, Yang K, Liu Z (2015) Mesenchymal stromal cell-dependent reprogramming of Kupffer cells is mediated by TNF-alpha and PGE2 and is crucial for liver transplant tolerance. Immunol Res 62(3):292–305. doi:10.1007/s12026-015-8660-2

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patricia Luz-Crawford or Farida Djouad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Luz-Crawford, P., Jorgensen, C., Djouad, F. (2017). Mesenchymal Stem Cells Direct the Immunological Fate of Macrophages. In: Kloc, M. (eds) Macrophages. Results and Problems in Cell Differentiation, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-319-54090-0_4

Download citation

Publish with us

Policies and ethics