Skip to main content
Book cover

Macrophages pp 299–313Cite as

Macrophage Dysfunction in Respiratory Disease

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 62))

Abstract

In the healthy lung, macrophages maintain homeostasis by clearing inhaled particles, bacteria, and removing apoptotic cells from the local pulmonary environment. However, in respiratory diseases including chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis, macrophages appear to be dysfunctional and may contribute to disease pathogenesis. In COPD, phagocytosis of bacterial species and apoptotic cells by both alveolar macrophages and monocyte-derived macrophages is significantly reduced, leading to colonization of the lung with pathogenic bacteria. COPD macrophages also release high levels of pro-inflammatory cytokines and chemokines, including CXCL8, TGFβ, and CCL2, driving recruitment of other inflammatory cells including neutrophils and monocytes to the lungs and promoting disease progression.

In asthma, defective phagocytosis and efferocytosis have also been reported, and macrophages appear to have altered cell surface receptor expression; however, it is as yet unclear how this contributes to disease progression but may be important in driving Th2-mediated inflammation. In cystic fibrosis, macrophages also display defective phagocytosis, and reduced bacterial killing, which may be driven by the pro-inflammatory environment present in the lungs of these patients.

The mechanisms behind defective macrophage function in lung diseases are not currently understood, but potential mechanisms include alterations in phagocytic receptor expression levels, oxidative stress, but also the possibility that specific diseases are associated with a specific, altered, macrophage phenotype that displays reduced function. Identification of the mechanisms responsible may present novel therapeutic opportunities for treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adcock IM, Ford PA, Bhavsar P, Ahmad T, Chung KF (2008) Steroid resistance in asthma: mechanisms and treatment options. Curr Allergy Asthma Rep 8(2):171–178

    Article  CAS  PubMed  Google Scholar 

  • Alexis NE, Soukup J, Nierkens S, Becker S (2001) Association between airway hyperreactivity and bronchial macrophage dysfunction in individuals with mild asthma. Am J Physiol Lung Cell Mol Physiol 280:369–375

    Google Scholar 

  • Alexis NE, Muhlebach MS, Peden DB, Noah TL (2006) Attenuation of host defense function of lung phagocytes in young cystic fibrosis patients. J Cyst Fibros 5(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Barnawi J, Tran H, Jersmann H, Pitson S, Roscioli E, Hodge G, Meech R, Haberberger R, Hodge S (2015) Potential link between the sphingosine-1-phosphate (S1P) system and defective alveolar macrophage phagocytic function in chronic obstructive pulmonary disease (COPD). PLoS One 10(10):e0122771. doi:10.1371/journal.pone.0122771

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnes PJ (2004a) Macrophages as orchestrators of COPD. J COPD 1:50–70

    Article  Google Scholar 

  • Barnes PJ (2004b) Mediators of chronic obstructive pulmonary disease. Pharmacol Rev 56(4):515–548. doi:10.1124/pr.56.4.2

    Article  CAS  PubMed  Google Scholar 

  • Berenson CS, Garlipp MA, Grove LJ, Maloney J, Sethi S (2006) Impaired phagocytosis of nontypeable Haemophilus influenzae by human alveolar macrophages in chronic obstructive pulmonary disease. J Infect Dis 194(10):1375–1384. doi:10.1086/508428

    Article  PubMed  Google Scholar 

  • Bhavsar P, Hew M, Khorasani N, Torrego A, Barnes PJ, Adcock I, Chung KF (2008) Relative corticosteroid insensitivity of alveolar macrophages in severe asthma compared with non-severe asthma. Thorax 63(9):784–790. doi:10.1136/thx.2007.090027

    Article  CAS  PubMed  Google Scholar 

  • Bianchi SM, Prince LR, McPhillips K, Allen L, Marriott HM, Taylor GW, Hellewell PG, Sabroe I, Dockrell DH, Henson PW, Whyte MK (2008) Impairment of apoptotic cell engulfment by pyocyanin, a toxic metabolite of Pseudomonas aeruginosa. Am J Respir Crit Care Med 177(1):35–43. doi:10.1164/rccm.200612-1804OC

    Article  CAS  PubMed  Google Scholar 

  • Bonfield TL, Panuska JR, Konstan MW, Hilliard KA, Hilliard JB, Ghnaim H, Berger M (1995) Inflammatory cytokines in cystic fibrosis lungs. Am J Respir Crit Care Med 152(6 Pt 1):2111–2118. doi:10.1164/ajrccm.152.6.8520783

    Article  CAS  PubMed  Google Scholar 

  • Bruscia EM, Bonfield TL (2016) Cystic fibrosis lung immunity: the role of the macrophage. J Innate Immun 8(6):550–563. doi:10.1159/000446825

    Article  CAS  PubMed  Google Scholar 

  • Busse WW, Lemanske RF (2001) Asthma. N Engl J Med 344:350–362

    Article  CAS  PubMed  Google Scholar 

  • Chana KK, Fenwick PS, Nicholson AG, Barnes PJ, Donnelly LE (2014) Identification of a distinct glucocorticosteroid-insensitive pulmonary macrophage phenotype in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 133(1):207–216 (e201–211). doi:10.1016/j.jaci.2013.08.044

  • Chmiel JF, Berger M, Konstan MW (2002) The role of inflammation in the pathophysiology of CF lung disease. Clin Rev Allergy Immunol 23(1):5–27. doi:10.1385/CRIAI:23:1:005

    Article  PubMed  Google Scholar 

  • Cosio BG, Tsaprouni L, Ito K, Jazrawi E, Adcock IM, Barnes PJ (2004) Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. J Exp Med 200(5):689–695. doi:10.1084/jem.20040416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa C, Rufino R, Traves SL, Lapa ESJR, Barnes PJ, Donnelly LE (2008) CXCR3 and CCR5 chemokines in induced sputum from patients with COPD. Chest 133(1):26–33. doi:10.1378/chest.07-0393

    Article  CAS  PubMed  Google Scholar 

  • Croasdell A, Thatcher TH, Kottmann RM, Colas RA, Dalli J, Serhan CN, Sime PJ, Phipps RP (2015) Resolvins attenuate inflammation and promote resolution in cigarette smoke-exposed human macrophages. Am J Physiol Lung Cell Mol Physiol 309(8):L888–L901. doi:10.1152/ajplung.00125.2015

    CAS  PubMed  PubMed Central  Google Scholar 

  • Culpitt SV, Rogers DF, Shah P, De Matos C, Russell RE, Donnelly LE, Barnes PJ (2003) Impaired inhibition by dexamethasone of cytokine release by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 167(1):24–31. doi:10.1164/rccm.200204-298OC

    Article  PubMed  Google Scholar 

  • Del Porto P, Cifani N, Guarnieri S, Di Domenico EG, Mariggio MA, Spadaro F, Guglietta S, Anile M, Venuta F, Quattrucci S, Ascenzioni F (2011) Dysfunctional CFTR alters the bactericidal activity of human macrophages against Pseudomonas aeruginosa. PLoS One 6(5):e19970. doi:10.1371/journal.pone.0019970

    Article  CAS  PubMed  Google Scholar 

  • Desch AN, Gibbings SL, Goyal R, Kolde R, Bednarek J, Bruno T, Slansky JE, Jacobelli J, Mason R, Ito Y, Messier E, Randolph GJ, Prabagar M, Atif SM, Segura E, Xavier RJ, Bratton DL, Janssen WJ, Henson PM, Jakubzick CV (2016) Flow cytometric analysis of mononuclear phagocytes in nondiseased human lung and lung-draining lymph nodes. Am J Respir Crit Care Med 193(6):614–626. doi:10.1164/rccm.201507-1376OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di A, Brown ME, Deriy LV, Li C, Szeto FL, Chen Y, Huang P, Tong J, Naren AP, Bindokas V, Palfrey HC, Nelson DJ (2006) CFTR regulates phagosome acidification in macrophages and alters bactericidal activity. Nat Cell Biol 8(9):933–944. doi:10.1038/ncb1456

    Article  CAS  PubMed  Google Scholar 

  • Donaldson GC, Seemungal TAR, Bhowmik A, Wedzicha JA (2002) Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax 57(10):847–852. doi:10.1136/thorax.57.10.847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Droemann D, Goldmann T, Tiedje T, Zabel P, Dalhoff K, Schaaf B (2005) Toll-like receptor 2 expression is decreased on alveolar macrophages in cigarette smokers and COPD patients. Respir Res 8(6):68

    Article  Google Scholar 

  • Duncan CJ, Lawrie A, Blaylock MG, Douglas JG, Walsh GM (2003) Reduced eosinophil apoptosis in induced sputum correlates with asthma severity. Eur Respir J 22(3):484–490. doi:10.1183/09031936.03.00109803a

    Article  CAS  PubMed  Google Scholar 

  • Ferrara F, D’Adda D, Falchi M, Dall’Asta L (1996) The macrophagic activity of patients affected by pneumonia or chronic obstructive pulmonary disease. Int J Tissue React 18(4–6):109–114

    CAS  PubMed  Google Scholar 

  • Finlay GA, O’Driscoll LR, Russell KJ, D’Arcy EM, Masterson JB, FitzGerald MX, O’Connor CM (1997) Matrix metalloproteinase expression and production by alveolar macrophages in emphysema. Am J Respir Crit Care Med 156(1):240–247

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick AM, Holguin F, Teague WG, Brown LAS (2008) Alveolar macrophage phagocytosis is impaired in children with poorly controlled asthma. J Allergy Clin Immunol 121(6):1372–1378. doi:10.1016/j.jaci.2008.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankenberger M, Passlick B, Hofer T, Siebeck M, Maier KL, Ziegler-Heitbrock LH (2000) Immunologic characterization of normal human pleural macrophages. Am J Respir Cell Mol Biol 23(3):419–426

    Article  CAS  PubMed  Google Scholar 

  • Frankenberger M, Eder C, Hofer TP, Heimbeck I, Skokann K, Kassner G, Weber N, Moller W, Ziegler-Heitbrock L (2011) Chemokine expression by small sputum macrophages in COPD. Mol Med 17(7–8):762–770. doi:10.2119/molmed.2010.00202

    CAS  PubMed  PubMed Central  Google Scholar 

  • George SN, Garcha DS, Mackay AJ, Patel ARC, Singh R, Sapsford RJ, Donaldson GC, Wedzicha JA (2014) Human rhinovirus infection during naturally occurring COPD exacerbations. Eur Respir J 44:87–96

    Article  PubMed  Google Scholar 

  • Gern JE, Dick EC, Lee WM, Murray S, Meyer K, Handzel ZT, Busse WW (1996) Rhinovirus enters but does not replicate inside monocytes and airway macrophages. J Immunol 156(2):621–627

    CAS  PubMed  Google Scholar 

  • Girodet PO, Nguyen D, Mancini JD, Hundal M, Zhou X, Israel E, Cernadas M (2016) Alternative macrophage activation is increased in asthma. Am J Respir Cell Mol Biol 55(4):467–475. doi:10.1165/rcmb.2015-0295OC

    Article  CAS  PubMed  Google Scholar 

  • Haggie PM, Verkman AS (2007) Cystic fibrosis transmembrane conductance regulator-independent phagosomal acidification in macrophages. J Biol Chem 282(43):31422–31428. doi:10.1074/jbc.M705296200

    Article  CAS  PubMed  Google Scholar 

  • Han MK, Huang YJ, LiPuma JJ, Boushey HA, Boucher RC, Cookson WO, Curtis JL, Erb-Downward J, Lynch SV, Sethi S, Toews GB, Young VB, Wolfgang MC, Huffnagle GB, Martinez FJ (2012) Significance of the microbiome in obstructive lung disease. Thorax 67(5):456–463. doi:10.1136/thoraxjnl-2011-201183

    Article  PubMed  PubMed Central  Google Scholar 

  • Harvey CJ, Thimmulappa RK, Sethi S, Kong X, Yarmus L, Brown RH, Feller-Kopman D, Wise R, Biswal S (2011) Targeting Nrf2 signaling improves bacterial clearance by alveolar macrophages in patients with COPD and in a mouse model. Sci Transl Med 3(78):78ra32. doi:10.1126/scitranslmed.3002042

    Article  PubMed  PubMed Central  Google Scholar 

  • Henson PM, Tuder RM (2008) Apoptosis in the lung: induction, clearance and detection. Am J Physiol Lung Cell Mol Physiol 294(4):L601–L611. doi:10.1152/ajplung.00320.2007

    Article  CAS  PubMed  Google Scholar 

  • Hill AT, Campbell EJ, Hill SL, Bayley DL, Stockley RA (2000) Association between airway bacterial load and markers of airway inflammation in patients with stable chronic bronchitis. Am J Med 109(4):288–295

    Article  CAS  PubMed  Google Scholar 

  • Hodge S, Hodge G, Scicchitano R, Reynolds PN, Holmes M (2003) Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immunol Cell Biol 81(4):289–296. doi:10.1046/j.1440-1711.2003.t01-1-01170.x

    Article  PubMed  Google Scholar 

  • Hodge S, Hodge G, Holmes M, Reynolds PN (2005) Increased airway epithelial and T-cell apoptosis in COPD remains despite smoking cessation. Eur Respir J 25(3):447–454

    Article  CAS  PubMed  Google Scholar 

  • Hodge S, Hodge G, Ahern J, Jersmann H, Holmes M, Reynolds PN (2007) Smoking alters alveolar macrophage recognition and phagocytic ability: implications in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 37(6):748–755. doi:10.1165/rcmb.2007-0025OC

    Article  CAS  PubMed  Google Scholar 

  • Hodge S, Hodge G, Jersmann H, Matthews G, Ahern J, Holmes M, Reynolds PN (2008) Azithromycin improves macrophage phagocytic function and expression of mannose receptor in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008(178):2

    Google Scholar 

  • Hodge S, Matthews G, Mukaro V, Ahern J, Shivam A, Hodge G, Holmes M, Jersmann H, Reynolds PN (2010) Cigarette smoke-induced changes to alveolar macrophage phenotype and function is improved by treatment with procysteine. Am J Respir Cell Mol Biol 44(5):673–681. doi:10.1165/rcmb.2009-0459OC

    Article  PubMed  Google Scholar 

  • Huynh ML, Malcolm KC, Kotaru C, Tilstra JA, Westcott JY, Fadok VA, Wenzel SE (2005) Defective apoptotic cell phagocytosis attenuates prostaglandin E2 and 15-hydroxyeicosatetraenoic acid in severe asthma alveolar macrophages. Am J Respir Crit Care Med 172(8):972–979. doi:10.1164/rccm.200501-035OC

    Article  PubMed  Google Scholar 

  • Ito K, Ito M, Elliott WM, Cosio B, Caramori G, Kon OM, Barczyk A, Hayashi S, Adcock IM, Hogg JC, Barnes PJ (2005) Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med 352(19):1967–1976. doi:10.1056/NEJMoa041892

    Article  CAS  PubMed  Google Scholar 

  • Jeffery PK (1999) Differences and similarities between chronic obstructive pulmonary disease and asthma. Clin Exp Allergy 29(Suppl 2):14–26

    Article  PubMed  Google Scholar 

  • Kirkham PA, Spooner G, Rahman I, Rossi AG (2004) Macrophage phagocytosis of apoptotic neutrophils is compromised by matrix proteins modified by cigarette smoke and lipid peroxidation products. Biochem Biophys Res Commun 318(1):32–37. doi:10.1016/j.bbrc.2004.04.003

    Article  CAS  PubMed  Google Scholar 

  • Kopf M, Schneider C, Nobs SP (2015) The development and function of lung-resident macrophages and dendritic cells. Nat Immunol 16(1):36–44. doi:10.1038/ni.3052

    Article  CAS  PubMed  Google Scholar 

  • Lay JC, Alexis NE, Zeman KL, Peden DB, Bennett WD (2009) In vivo uptake of inhaled particles by airway phagocytes is enhanced in patients with mild asthma compared with normal volunteers. Thorax 64(4):313–320

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, Zhang Q, Thomas CM, Chana KK, Gibeon D, Barnes PJ, Chung KF, Bhavsar PK, Donnelly LE (2014) Impaired macrophage phagocytosis of bacteria in severe asthma. Respir Res 15:72

    Article  PubMed  PubMed Central  Google Scholar 

  • Lofdahl JM, Wahlstrom J, Skold CM (2006) Different inflammatory cell pattern and macrophage phenotype in chronic obstructive pulmonary disease patients, smokers and non-smokers. Clin Exp Immunol 145(3):428–437. doi:10.1111/j.1365-2249.2006.03154.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundborg M, Johard U, Lastbom L, Gerde P, Camner P (2001) Human alveolar macrophage phagocytic function is impaired by aggregates of ultrafine carbon particles. Environ Res 86(3):244–253. doi:10.1006/enrs.2001.4269

    Article  CAS  PubMed  Google Scholar 

  • Mallia P, Message SD, Gielen V, Contoli M, Gray K, Kebadze T, Aniscenko J, Laza-Stanca V, Edwards MR, Slater L, Papi A, Stanciu LA, Kon OM, Johnson M, Johnston SL (2011) Experimental rhinovirus infection as a human model of chronic obstructive pulmonary disease exacerbation. Am J Respir Crit Care Med 183(6):734–742. doi:10.1164/rccm.201006-0833OC

    Article  PubMed  Google Scholar 

  • Metcalfe HJ, Lea S, Hughes D, Khalaf R, Abbott-Banner K, Singh D (2014) Effects of cigarette smoke on Toll-like receptor (TLR) activation of chronic obstructive pulmonary disease (COPD) macrophages. Clin Exp Immunol 176(3):461–472. doi:10.1111/cei.12289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morimoto K, Janssen WJ, Terada M (2012) Defective efferocytosis by alveolar macrophages in IPF patients. Respir Med 106(12):1800–1803. doi:10.1016/j.rmed.2012.08.020

    Article  PubMed  PubMed Central  Google Scholar 

  • Nielsen H, Bonde J (1986) Association of defective monocyte chemotaxis with recurrent acute exacerbations in chronic obstructive lung disease. Eur J Respir Dis 68(3):200–206

    CAS  PubMed  Google Scholar 

  • Oliver BG, Lim S, Wark P, Laza-Stanca V, King N, Black JL, Burgess JK, Roth M, Johnston SL (2008) Rhinovirus exposure impairs immune responses to bacterial products in human alveolar macrophages. Thorax 63(6):519–525

    Article  CAS  PubMed  Google Scholar 

  • Pappas K, Papaioannou AI, Kostikas K, Tzanakis N (2013) The role of macrophages in obstructive airways disease: chronic obstructive pulmonary disease and asthma. Cytokine 64(3):613–625. doi:10.1016/j.cyto.2013.09.010

    Article  CAS  PubMed  Google Scholar 

  • Park GY, Christman JW (2016) Hidden in plain sight: the overlooked role of pulmonary macrophages in the pathogenesis of asthma. Am J Respir Cell Mol Biol 55(4):465–466. doi:10.1165/rcmb.2016-0188ED

    Article  PubMed  Google Scholar 

  • Pons AR, Noguera A, Blanquer D, Sauleda J, Pons J, Agustí AGN (2005) Phenotypic characterisation of alveolar macrophages and peripheral blood monocytes in COPD. Eur Respir J 25:647–652

    Article  CAS  PubMed  Google Scholar 

  • Ritts RE, Miller RD, LeDuc PV, Offord KP (1976) Phagocytosis and cutaneous delayed hypersensitivity in patients with chronic obstructive pulmonary disease. Chest 69(4):474–478

    Article  CAS  PubMed  Google Scholar 

  • Russell RE, Culpitt SV, DeMatos C, Donnelly L, Smith M, Wiggins J, Barnes PJ (2002a) Release and activity of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 26(5):602–609. doi:10.1165/ajrcmb.26.5.4685

    Article  CAS  PubMed  Google Scholar 

  • Russell RE, Thorley A, Culpitt SV, Dodd S, Donnelly LE, Demattos C, Fitzgerald M, Barnes PJ (2002b) Alveolar macrophage-mediated elastolysis: roles of matrix metalloproteinases, cysteine, and serine proteases. Am J Physiol Lung Cell Mol Physiol 283(4):L867–L873

    Article  CAS  PubMed  Google Scholar 

  • Sapey E, Stockley RA (2006) COPD exacerbations: aetiology. Thorax 61(3):250–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savici D, Campbell PA, King TE Jr (1989) Bronchoalveolar macrophages from patients with idiopathic pulmonary fibrosis are unable to kill facultative intracellular bacteria. Am Rev Respir Dis 139(1):22–27. doi:10.1164/ajrccm/139.1.22

    Article  CAS  PubMed  Google Scholar 

  • Shaykhiev R, Krause A, Salit J, Strulovici-Barel Y, Harvey BG, O’Connor TP, Crystal RG (2009) Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease. J Immunol 183(4):2867–2883. doi:10.4049/jimmunol.0900473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonin-Le Jeune K, Le Jeune A, Jouneau S, Belleguic C, Roux PF, Jaguin M, Dimanche-Boitre MT, Lecureur V, Leclercq C, Desrues B, Brinchault G, Gangneux JP, Martin-Chouly C (2013) Impaired functions of macrophage from cystic fibrosis patients: CD11b, TLR-5 decrease and sCD14, inflammatory cytokines increase. PLoS One 8(9):e75667. doi:10.1371/journal.pone.0075667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AM, Busse WW (2006) Asthma exacerbations. 2: aetiology. Thorax 61(9):809–816. doi:10.1136/thx.2005.045179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stahl M, Schupp J, Jäger B, Schmid M, Zissel G, Müller-Quernheim J, Prasse A (2013) Lung collagens perpetuate pulmonary fibrosis via CD204 and M2 macrophage activation. PLoS One 8(11):e81382. doi:10.1371/journal.pone.0081382

    Article  PubMed  PubMed Central  Google Scholar 

  • Staples KJ, Hinks TS, Ward JA, Gunn V, Smith C, Djukanovic R (2012) Phenotypic characterization of lung macrophages in asthmatic patients: overexpression of CCL17. J Allergy Clin Immunol 130(6):1404–1412 (e1407). doi:10.1016/j.jaci.2012.07.023

  • Taylor AE, Finney-Hayward TK, Quint JK, Thomas CM, Tudhope SJ, Wedzicha JA, Barnes PJ, Donnelly LE (2010) Defective macrophage phagocytosis of bacteria in COPD. Eur Respir J 35(5):1039–1047. doi:10.1183/09031936.00036709

    Article  CAS  PubMed  Google Scholar 

  • Valenza G, Tappe D, Turnwald D, Frosch M, Konig C, Hebestreit H, Abele-Horn M (2008) Prevalence and antimicrobial susceptibility of microorganisms isolated from sputa of patients with cystic fibrosis. J Cyst Fibros 7(2):123–127

    Article  CAS  PubMed  Google Scholar 

  • Vandivier RW, Fadok VA, Hoffmann PR, Bratton DL, Penvari C, Brown KK, Brain JD, Accurso FJ, Henson PM (2002) Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Clin Invest 109(5):661–670. doi:10.1172/JCI13572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandivier RW, Henson PM, Douglas IS (2006) Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest 129(6):1673–1682. doi:10.1378/chest.129.6.1673

    Article  PubMed  Google Scholar 

  • Vecchiarelli A, Dottorini M, Puliti M, Todisco T, Cenci E, Bistoni F (1991) Defective candidacidal activity of alveolar macrophages and peripheral blood monocytes from patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 143(5 Pt 1):1049–1054. doi:10.1164/ajrccm/143.5_Pt_1.1049

    Article  CAS  PubMed  Google Scholar 

  • Walsh GM (2008) Defective apoptotic cell clearance in asthma and COPD—a new drug target for statins? Trends Pharmacol Sci 29(1):6–11. doi:10.1016/j.tips.2007.11.002

    Article  CAS  PubMed  Google Scholar 

  • Wedzicha JA, Donaldson GC (2003) Exacerbations of chronic obstructive pulmonary disease. Respir Care 48(12):1204–1213. Discussion 1213–1205

    PubMed  Google Scholar 

  • Wellington M, Bliss JM, Haidaris CG (2003) Enhanced phagocytosis of Candida species mediated by opsonization with recombinant human antibody single chain variable fragment. Infect Immun 71(12):7228–7231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson TM, Patel IS, Wilks M, Donaldson GC, Wedzicha JA (2003) Airway bacterial load and FEV1 decline in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 167(8):1090–1095. doi:10.1164/rccm.200210-1179OC

    Article  PubMed  Google Scholar 

  • Wojtan P, Mierzejewski M, Osinska I, Domagala-Kulawik J (2016) Macrophage polarization in interstitial lung diseases. Cent Eur J Immunol 41(2):159–164. doi:10.5114/ceji.2016.60990

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright AK, Rao S, Range S, Eder C, Hofer TP, Frankenberger M, Kobzik L, Brightling C, Grigg J, Ziegler-Heitbrock L (2009) Pivotal advance: expansion of small sputum macrophages in CF: failure to express MARCO and mannose receptors. J Leukoc Biol 86(3):479–489. doi:10.1189/jlb.1108699

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise E. Donnelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Belchamber, K.B.R., Donnelly, L.E. (2017). Macrophage Dysfunction in Respiratory Disease. In: Kloc, M. (eds) Macrophages. Results and Problems in Cell Differentiation, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-319-54090-0_12

Download citation

Publish with us

Policies and ethics