Skip to main content

Shallow Non-confluent P Systems

  • Conference paper
  • First Online:
Membrane Computing (CMC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10105))

Included in the following conference series:

Abstract

We prove that non-confluent (i.e., strongly nondeterministic) P systems with active membranes working in polynomial time are able to simulate polynomial-space nondeterministic Turing machines, and thus to solve all \({\mathbf{PSPACE }}\) problems. Unlike the confluent case, this result holds for shallow P systems. In particular, depth 1 (i.e., only one membrane nesting level and using elementary membrane division only) already suffices, and neither dissolution nor send-in communication rules are needed.

This work was partially supported by Fondo d’Ateneo (FA) 2015 of Università degli Studi di Milano-Bicocca: “Complessità computazionale e applicazioni crittografiche di modelli di calcolo bioispirati”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alhazov, A., Freund, R.: On the efficiency of P systems with active membranes and two polarizations. In: Mauri, G., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 146–160. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31837-8_8

    Chapter  Google Scholar 

  2. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Simulating elementary active membranes. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 284–299. Springer, Heidelberg (2014). doi:10.1007/978-3-319-14370-5_18

    Google Scholar 

  3. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Membrane division, oracles, and the counting hierarchy. Fundam. Informaticae 138(1–2), 97–111 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Monodirectional P systems. In: Macìas-Ramos, L.F., Păun, G., Riscos-Núñez, A., Valencia-Cabrera, L. (eds.) Proceedings of the 13th Brainstorming Week on Membrane Computing, pp. 207–226. Fénix Editora (2015)

    Google Scholar 

  5. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Tissue P systems can be simulated efficiently with counting oracles. In: Rozenberg, G., Salomaa, A., Sempere, J.M., Zandron, C. (eds.) CMC 2015. LNCS, vol. 9504, pp. 251–261. Springer, Heidelberg (2015). doi:10.1007/978-3-319-28475-0_17

    Chapter  Google Scholar 

  6. Murphy, N., Woods, D.: The computational power of membrane systems under tight uniformity conditions. Nat. Comput. 10(1), 613–632 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Pan, L., Pérez-Jiménez, M.J.: Computational complexity of tissue-like P systems. J. Complex. 26(3), 296–315 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1993)

    MATH  Google Scholar 

  9. Păun, G.: P systems with active membranes: attacking NP-complete problems. J. Autom. Lang. Comb. 6(1), 75–90 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity classes in models of cellular computing with membranes. Nat. Comput. 2(3), 265–284 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Porreca, A.E., Mauri, G., Zandron, C.: Non-confluence in divisionless P systems with active membranes. Theor. Comput. Sci. 411(6), 878–887 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Păun, G., Pérez-Jiménez, M.J., Riscos Núñez, A.: Tissue P systems with cell division. Int. J. Comput. Commun. Control 3(3), 295–303 (2008)

    Article  Google Scholar 

  13. Sosík, P.: The computational power of cell division in P systems: beating down parallel computers? Nat. Comput. 2(3), 287–298 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sosík, P., Rodríguez-Patón, A.: Membrane computing and complexity theory: a characterization of PSPACE. J. Comput. Syst. Sci. 73(1), 137–152 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P systems with active membranes. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.) UMC’2K. DISCMATH, pp. 289–301. Springer, Heidelberg (2001). doi:10.1007/978-1-4471-0313-4_21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Zandron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C. (2017). Shallow Non-confluent P Systems. In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds) Membrane Computing. CMC 2016. Lecture Notes in Computer Science(), vol 10105. Springer, Cham. https://doi.org/10.1007/978-3-319-54072-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54072-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54071-9

  • Online ISBN: 978-3-319-54072-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics