Reducing Greenhouse Gas Emissions from Livestock Farms

  • Sabah A. A. JassimEmail author
  • Richard G. Limoges


Greenhouse gas emissions from the agricultural sector are a key contributor to climate change. Bacteriophage ‘Phage’ biocontrol or harnessing nature’s bacterial control mechanisms is becoming increasingly important as a means of eradicating or controlling microbial populations and also has the potential to be used to reduce methane emissions from ruminants. Phages can be programmed for increased effectiveness and integrated into farming practices by harnessing phage biocontrol techniques to enable ruminants’ digestive systems and manure degradation to adapt and thereby reduce emissions. Several techniques are proposed to eradicate enteric methane emissions from animal digestion and manure degradation. Understanding the basics about phages’ interaction with methanogenic archaea is pivotal in the mitigation strategies to curtail methane production. Strategies for implementing phage biocontrol to reduce the emissions from livestock manure are also discussed.


Animal waste Bacteriophage Climate change Greenhouse gas Livestock manure Methane Methanogenesis Nitrous oxide Phage biocontrol 


  1. Alberta Agriculture and Forestry (2004) Manure management and greenhouse gases—things you need to know. Alberta Environmentally Sustainable Agriculture Council, Number 11, June 2004.$department/deptdocs.nsf/all/cl10038
  2. Aldoori AA, Mahdii EF, Abbas AK, Jassim SAA (2015) Bacteriophage biocontrol rescues mice bacteremia of clinically isolated mastitis from dairy cows associated with methicillin-resistant Staphylococcus aureus. Adv Microbiol 5:383–403.
  3. Bach SJ, Wang Y, McAllister TA (2008) Effect of feeding sun-dried seaweed (Ascophyllum nodosum) on fecal shedding of Escherichia coli O157:H7 by feedlot cattle and on growth performance of lambs. Anim Feed Sci Techn 142:17–32CrossRefGoogle Scholar
  4. Baker SK (1999) Rumen methanogens and inhibition of methanogenesis. Aust J Agric Res 50:1293–1298. doi: 10.1071/AR99005
  5. Becker H (2000) Carbonating cow manure, the latest strategy in fighting E. coli and other microbes. Feb 9, 2000, US Department of Agriculture website.
  6. Beuchat LR, Ryu J-H (1997) Produce handling and processing practices. Emerg Infect Dis 3:459–465CrossRefPubMedPubMedCentralGoogle Scholar
  7. Boadi D, Benchaar C, Chiquette J, Massé D (2004) Mitigation strategies to reduce enteric methane emissions from dairy cows: update review. Can J Anim Sci 84:319–335CrossRefGoogle Scholar
  8. Boone DR, Whitman WB, Koga Y (2001) Order II. Methanobacteriacea. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 246–247Google Scholar
  9. Boopathy R (1997) Anaerobic phenol degradation by microorganisms of swine manure. Curr Microbiol 35(1):64–67CrossRefPubMedGoogle Scholar
  10. Bravender R, Geman B, Luntz T, Greenwire (2009) Farm interests use EPA spending bill to fight climate regs. The New York Times. June 19, 2009
  11. Brigham K, Meyrick D (1986) Endotoxin and lung injury. Am Rev Respir Dis 133(5):913–927PubMedGoogle Scholar
  12. Dolliver H, Gupta S (2008) Antibiotic losses in leaching and surface runoff from manure-amended agricultural land. J Environ Qual 37:1227–1237CrossRefPubMedGoogle Scholar
  13. FAO (2010) Agribusiness handbook: poultry meat and eggs. Rome, Italy.
  14. Garrity GM, Holt JG (2001) Phylum AII. Euryarchaeota phy. nov. In Boone DR, Castenholz RW (eds) The archaea and the deeply branching and phototrophic bacteria. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology, 2nd ed, vol 1. Springer, New York, pp 211–355Google Scholar
  15. Gerba CP, Smith JE Jr (2005) Sources of pathogenic microorganisms and their fate during land application of wastes. J Environ Qual 34(1):42–48PubMedGoogle Scholar
  16. Goodland R, Anhang J (2009) Livestock and climate change. World Watch Institute.
  17. Havelaar AH (1987) Virus, bacteriophages and water purification. Vet Q 9(4):356–360CrossRefPubMedGoogle Scholar
  18. Jassim SAA, Limoges RG (2013) Impact of external forces on cyanophage–host interactions in aquatic ecosystems. World J Microbiol Biotechnol 29(10):1751–1762. doi: 10.1007/s11274-013-1358-5
  19. Jassim SAA, Limoges RG (2014) Natural solution to antibiotic resistance: bacteriophages ‘The Living Drugs’. World J Microbiol Biotechnol 30(8):2153–2170. doi: 10.1007/s11274-014-1655-7
  20. Jassim SAA; Abdulamir AS, Abu Bakar F (2010) Methods for bacteriophage design. WIPO Patent Application WO2010/064044.
  21. Jarvis GN, Fields MW, Adamovich DA et al (2001) The mechanism of carbonate killing of Escherichia coli. Lett Appl Microbiol 33(3):196–200CrossRefPubMedGoogle Scholar
  22. Jordan M, Meile L, Leisinger T (1989) Organization of Methanobacterium thermoautotrophicum bacteriophage ΨM1 DNA. Mol Gen Genet 220:161–164CrossRefPubMedGoogle Scholar
  23. Kilborn PT (1999) Hurricane reveals flaws in farm law as animal waste threatens N. Carolina water. The New York Times. October 17, 1999. Sunday, Late Edition-Final. Section 1, p 32Google Scholar
  24. Kim SY, Pramanik P, Bodelier PLE, Kim PJ (2014) Cattle manure enhances methanogens diversity and methane emissions compared to swine manure under rice paddy. PLoS ONE 9(12):e113593CrossRefPubMedPubMedCentralGoogle Scholar
  25. Knox MR, Harris JE (1986) Isolation and characterization of a bacteriophage of Methanobrevibacter smithii. In: Abstract of the XIV International Congress on Microbiology, International Union of Microbiology Societies. Manchester, EnglandGoogle Scholar
  26. Koneswaran G, Nierenberg D. Global (2008) Farm animal production and global warming: impacting and mitigating climate change. Environ Health Perspect 116(5):578–582. doi: 10.1289/ehp.11034
  27. Kumar S, Puniya AK, Puniya M et al (2009) Factors affecting rumen methanogens and methane mitigation strategies. World J Microbiol Biotechnol 25(9):1557–1566CrossRefGoogle Scholar
  28. Kutter E, Sulakvelidze A (2005) Bacteriophages biology and applications. CRC Press, Boca Raton, London, New YorkGoogle Scholar
  29. Laçi D, Bizhga B (2013) The antibiotic resistance of bacterial pathogens isolated from poultry manure used for fish ponds. Anglisticum J (IJLLIS) 2(4):199–206. doi: 10.0001/(aj).v2i4.547 Google Scholar
  30. LEAD (Livestock, Environment and Development) (2006) Livestock’s long shadow: environmental issues and options. The United Nations: Food and Agriculture Organization. Rome.
  31. Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic Archaea. Ann NY Acad Sci 1125:171–189CrossRefPubMedGoogle Scholar
  32. Luo Y, Pfister P, Leisinger T, Wasserfallen A (2001) The genome of archaeal prophage ѰM100 encodes the lytic enzyme responsible for autolysis of Methanothermobacter wolfeii. J Bacteriol 183:5788–5792CrossRefPubMedPubMedCentralGoogle Scholar
  33. McAllister TA, Newbold CJ (2008) Redirecting rumen fermentation to reduce methanogenesis. Aust J Exp Agric 48:(2)7–13Google Scholar
  34. McAllister TA, Okine EK, Mathison GW, Cheng KJ (1996) Dietary, environmental and microbiological aspects of methane production in ruminants. Can J Anim Sci 76:231–243CrossRefGoogle Scholar
  35. McLaughlin MR, Balaa MF, Sims J, King R (2006) Isolation of Salmonella bacteriophages from swine effluent lagoons. J Environ Qual 35(522):528Google Scholar
  36. Michael T (2010) Sour showers: acid rain returns—This time it is caused by nitrogen emissions. Scientific American. June 21, 2010.
  37. Park MO, Ikenaga H, Watanabe K (2007) Phage diversity in a methanogenic digester. Microb Ecol 53(1):98–103CrossRefPubMedGoogle Scholar
  38. Paustian K, Antle M, Sheehan J, Eldor P (2006) Agriculture’s role in greenhouse gas mitigation. Pew Center on Global Climate Change, Washington, DCGoogle Scholar
  39. Pfister P, Wasserfallen A, Stettler R, Leisinger T (1998) Molecular analysis of Methanobacterium phage ΨM2. Mol Microbiol 30:233–244CrossRefPubMedGoogle Scholar
  40. Roustan JL, Touzel JP, Prensier G, et al (1986) A bacteriophage for Methanothrix sp. In: Duine JA, Van Verseveld HW (eds) Abstract of the 5th international symposium on microbial growth on C1 compounds. Haren, The Netherlands, pp 35Google Scholar
  41. Sejian V, Shekhawat I, Ujor V et al (2012) Global climate change: enteric methane reduction strategies in livestock. In: Sejian V, Naqvi SMK, Ezeji T et al (eds) Environmental stress and amelioration in livestock production. Springer, Berlin Heidelberg, Chap 16, pp 469–499Google Scholar
  42. Shukla SK, Hirpurkar SD, Singh SK, Rajoria R (2014) Isolation of phage from animal waste of different LSF and their utility in phage therapy. IJCMAS 3(8):205–210Google Scholar
  43. Steinfeld H, Gerber P, Wassenaar T et al (2006) Livestock’s long shadow: environmental issues and options. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  44. USDA (2002) Agricultural research service. National program 206: Manure and by product Utilization: Research accomplishments
  45. Wang Y, Xu Z, Bach SJ, McAllister TA (2009) Sensitivity of Escherichia coli to seaweed (Ascophyllum nodosum) phlorotannins and terrestrial tannins. Asian-Austral J Anim Sci 22:238–245CrossRefGoogle Scholar
  46. Wang H, Wang L (2014) Animal waste as an energy feedstock availability and sustainability. In: Wang L (ed) Sustainable bioenergy production. CRC Press, NW. Chap 12, pp 245–257Google Scholar
  47. Wommack KE, Colwell RR (2000) Virioplankton: Viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64(1):69–114. doi: 10.1128/MMBR.64.1.69-114.2000. PMC 98987. PMID 10704475

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Applied Bio Research Inc.WindsorCanada

Personalised recommendations