Advertisement

Control, Prevention and Rapid Detection of Methicillin-Resistant Staphylococcus aureus

  • Sabah A. A. JassimEmail author
  • Richard G. Limoges
Chapter

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) infections are a particular problem in hospitals. Wild phages can be reprogrammed for several clinical isolates of MRSA. These phages can then be utilized in a safe fogging biocontrol system, using specialized dispensers, along with another non toxic liquid variation as a surface disinfectant in healthcare or animal settings for the decontamination of MRSA and other antibiotic resistant bacteria. This phage-based biocontrol technology is non-toxic, odourless, inexpensive and effective in controlling and reducing the risk of contracting a hospital-acquired MRSA infection. By using phages as a biocontrol in medical facilities both staff and patients can feel safe from MRSA. This chapter will demonstrate the benefits of phage-based MRSA decontamination coupled with several rapid bacterial detection protocols enabling the development of inexpensive diagnostic kits and safe decontamination methods. There is also an urgent need for a real-time, accurate and inexpensive diagnostic kit that can be used in situ with no need for skilled technicians while also allowing patients to test for some diseases or conditions at home. These tests are cost-effective, quick, and confidential. The aim of this chapter is to provide a comprehensive overview of some innovative phage biocontrol methodologies and diagnostic kits that can be used in healthcare settings, while encouraging further research on the use of phages diagnostically and preventatively in daily decontamination practices.

Keywords

Bacteriophage Biocontrol Diagnostic Endolysins enzymes Epidemiology Farm animals Food Hospitals Infections Livestock Methicillin-resistant Staphylococcus aureus Methicillin-resistant coagulase-negative staphylococci Poultry Staphylococci 

References

  1. Abdalrahman LS, Wells H, Fakhr MK (2015) Staphylococcus aureus is more prevalent in retail beef livers than in pork and other beef cuts. Pathogens 4(2):182–198. doi: 10.3390/pathogens4020182 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abdulamir AS, Jassim SAA, Abu Bakar F (2014) Novel approach of using a cocktail of designed bacteriophages against gut pathogenic E. coli for bacterial load biocontrol. Ann Clin Microbiol Antimicrob 13:39. doi: 10.1186/s12941-014-0039-z
  3. Abdulamir AS, Jassim SAA, Hafidh RR, Bakar FA (2015) The potential of bacteriophage cocktail in eliminating Methicillin-resistant Staphylococcus aureus biofilms in terms of different extracellular matrices expressed by PIA, ciaA-D and FnBPA genes. Ann Clin Microbiol Antimicrob 14:49. doi: 10.1186/s12941-015-0106-0. http://www.ncbi.nlm.nih.gov/pubmed/26558683
  4. Abreu AC, Tavares RR, Anabela Borges A et al (2013) Current and emergent strategies for disinfection of hospital environments. J Antimicrob Chemother 68(12):2718–2732. doi: 10.1093/jac/dkt281 PubMedCrossRefGoogle Scholar
  5. Aellen S, Que Y-A, Guignard B et al (2006) Detection of live and antibiotic-killed bacteria by quantitative real-time PCR of specific fragments of rRNA. Antimicrob Agents Chemother 50(6):1913–1920. doi: 10.1128/AAC.00869-05 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Aldoori AA, Mahdii EF, Abbas AK, Jassim SAA (2015) Bacteriophage biocontrol rescues mice bacteremic of clinically isolated mastitis from dairy cows associated with methicillin-resistant Staphyloccocus aureus. Adv Microbiol 5:383–403. doi: 10.4236/aim.2015.56040 CrossRefGoogle Scholar
  7. Alisky J, Iczkowski K, Rapoport A, Troitsky N (1998) Bacteriophages show promise as antimicrobial agents. J Infect 36(1):5–15PubMedCrossRefGoogle Scholar
  8. Araki M, Kariyama R, Monden K et al (2002) Molecular epidemiological studies of Staphylococcus aureus in urinary tract infection. J Infect Chemother 8:168–174PubMedCrossRefGoogle Scholar
  9. Argudín MÁ, Mendoza MC, Rodicio MR (2010) Food poisoning and Staphylococcus aureus enterotoxins. Toxins (Basel) 2(7):1751–1773. doi: 10.3390/toxins2071751 CrossRefGoogle Scholar
  10. Armand-Lefevre L, Ruimy R, Andremont A (2005) Clonal comparison of Staphylococcus aureus isolates from healthy pig farmers, human controls, and pigs. Emerg Infect Dis 11:711–714PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bachrach G, Leizerovici-Zigmond M, Zlotkin A et al (2003) Bacteriophage isolation from human saliva. Lett Appl Microbiol 36:50–53PubMedCrossRefGoogle Scholar
  12. Bai J, Kim Y-T, Ryu S, Lee J-H (2016) Biocontrol and rapid detection of food-borne pathogens using bacteriophages and endolysins. Front Microbiol 7:article 474. doi: 10.3389/fmicb.2016.00474
  13. Baptiste K, Williams K, Willams N et al (2005) Methicillin-resistant staphylococci in companion animals. Emerg Infect Dis 11(12):1942–1944PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bentley DW, Bradley S, High K et al (2001) Practice guideline for evaluation of fever and infection in long-term care facilities. J Am Geriatr Soc 49:210–222PubMedCrossRefGoogle Scholar
  15. Berendt AE, Turnbull L, Spady D et al (2011) Three swipes and you’re out: how many swipes are needed to decontaminate plastic with disposable wipes? Am J Infect Control 39(5):442–443. doi: 10.1016/j.ajic.2010.08.014 PubMedCrossRefGoogle Scholar
  16. Bergeron M, Dauwalder O, Gouy M et al (2011) Species identification of staphylococci by amplification and sequencing of the tuf gene compared to the gap gene and by matrix-assisted laser desorption timeof-flight mass spectrometry. Eur J Clin Microbiol Infect Dis 30:343–354PubMedCrossRefGoogle Scholar
  17. Bessonneau V, Clément M, Thomas O (2010) Can intensive use of alcohol-based hand rubs lead to passive alcoholization? Int J Environ Res Public Health 7(8):3038–3050. doi: 10.3390/ijerph7083038 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bhalla A, Aron DC, Donske CJ (2007) Staphylococcus aureus intestinal colonization is associated with increased frequency of S. aureus on skin of hospitalized patients. BMC Infect Dis 7:105. doi: 10.1186/1471-2334-7-105 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bhalla A, Pultz NJ, Gries DM et al (2004) Acquisition of nosocomial pathogens on hands after contact with environmental surfaces near hospitalized patients. Infect Control Hosp Epidemiol 25:164–167PubMedCrossRefGoogle Scholar
  20. Bhargava K, Wang X, Donabedian S et al (2011) Methicillin-Resistant Staphylococcus aureus in Retail Meat, Detroit, Michigan, USA. Emerg Infect Dis 17(6):1135–1137. doi: 10.3201/eid1706.101095 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bhaskaran K, Hemalatha G, Sethumadhavan K (2014) Methicillin resistant Staphylococcus aureus carriage amongst students of the medical college. Int J Adv Res Biol Sci 1(7):188–192Google Scholar
  22. Blok HEM, Trolestra A, Kamp-Hopmans TEM et al (2003) Role of health care workers in outbreaks of methicillin resistant Staphylococcus aureus: a 10-year evaluation from a Dutch university hospital. Infect Control Hosp Epidemiol 24(9):679–685Google Scholar
  23. Blot S, Vandewoude K, Hoste E, Colardyn F (2002) Outcome and attributable mortality in critically Ill patients with bacteremia involving methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Arch Intern Med 162:2229–2235PubMedCrossRefGoogle Scholar
  24. Boost MV, O’Donoghue MM, James A (2008) Prevalence of Staphylococcus aureus carriage among dogs and their owners. Epidemiol Infect 136(7):953–964PubMedCrossRefGoogle Scholar
  25. Boyce JM (2007) Environmental contamination makes an important contribution to hospital infection. J Hosp Infect 65(2):50–54. doi: 10.1016/S0195-6701(07)60015-2 PubMedCrossRefGoogle Scholar
  26. Boyce JM, Havill NL (2005) Nosocomial antibiotic-associated diarrhea associated with enterotoxin-producing strains of methicillin-resistant Staphylococcus aureus. Am J Gastroenterol 100(8):1828–1834. doi: 10.1111/j.1572-0241.2005.41510.x PubMedCrossRefGoogle Scholar
  27. Boyce JM, Potter-Bynoe G, Chenevert C et al (1997) Environmental contamination due to methicillin-resistant Staphylococcus aureus: possible infection control implications. Infect Control Hosp Epidemiol 18(9):622–627PubMedCrossRefGoogle Scholar
  28. Boyle-Vavra S, Daum RS (2007) Community acquired methicillin-resistant Staphylococcus aureus: the role of Panton-Valentine leukocidin. Lab Invest 87:3–9PubMedCrossRefGoogle Scholar
  29. Brownlee C (2005) The Beef about UTIs. Food for thought. Biomedicine. Science News. 12 Jan 2005. https://www.sciencenews.org/blog/food-thought/beef-about-utis
  30. Calfee DP, Salgado CD, Classen D et al (2008) Strategies to prevent transmission of methicillin-resistant Staphylococcus aureus in acute care hospitals. Infect Control Hosp Epidemiol 29(Suppl 1):S62–S80. doi: 10.1086/591061 PubMedCrossRefGoogle Scholar
  31. Carling PC, Briggs JL, Perkins J, Highlander D (2006) Improved cleaning of patient rooms using a new targeting method. Clin Infect Dis 42(3):385–388PubMedCrossRefGoogle Scholar
  32. Carling PC, Parry MF, Von Beheren SM (2008) Identifying opportunities to enhance environmental cleaning in 23 acute care hospitals. Infect Control Hosp Epidemiol 29:1–7PubMedCrossRefGoogle Scholar
  33. Carlton RM (1999) Phage therapy: past history and future prospects. Arch Immunol Ther Exp 47(5):267–274Google Scholar
  34. CDC (2007) MRSA: Methicillin-resistant Staphylococcus aureus in healthcare settings. Bulletin 14Google Scholar
  35. Chah KF, Gómez-Sanz E, Nwanta JA et al (2014) Methicillin-resistant coagulase-negative staphylococci from healthy dogs in Nsukka, Nigeria. Braz J Microbiol 45(1):215–220PubMedPubMedCentralCrossRefGoogle Scholar
  36. Chua KY, Monk IR, Lin Y-H et al (2014) Hyperexpression of α-hemolysin explains enhanced virulence of sequence type 93 community-associated methicillin-resistant Staphylococcus aureus. BMC Microbiol 14:31. doi: 10.1186/1471-2180-14-31 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Coll PP, Crabtree BF, O’Connor PJ, Klenzak S (1994) Clinical risk factors for methicillin-resistant Staphylococcus aureus bacteriuria in a skilled-care nursing home. Arch Fam Med 3:357–360PubMedCrossRefGoogle Scholar
  38. Cosgrove SE, Sakoulas G, Perencevich EN et al (2003) Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis 36:53–59PubMedCrossRefGoogle Scholar
  39. Cosgrove SE, Qi Y, Kaye KS et al (2005) The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges. Infect Control Hosp Epidemiol 26:166–174PubMedCrossRefGoogle Scholar
  40. Cotterill S, Evans R, Fraise AP (1996) An unusual source for an outbreak of methicillin-resistant Staphylococcus aureus on an intensive therapy unit. J Hosp Infect 32:207–216PubMedCrossRefGoogle Scholar
  41. Cui S, Li J, Hu C et al (2009) Isolation and characterization of methicillin-resistant Staphylococcus aureus from swine and workers in China. J Antimicrob Chemother 64:680–683PubMedCrossRefGoogle Scholar
  42. Dancer SJ (2009) The role of environmental cleaning in the control of hospital-acquired infection. J Hosp Infect 73:378–385PubMedCrossRefGoogle Scholar
  43. de Boer E, Zwartkruis-Nahuis JT, Wit B et al (2009) Prevalence of methicillin-resistant Staphylococcus aureus in meat. Int J Food Microbiol 134:52–56. doi: 10.1016/j.ijfoodmicro.2008.12.007 PubMedCrossRefGoogle Scholar
  44. de Neeling A, van den Broek M, Spalburg E et al (2007) High prevalence of methicillin resistant Staphylococcus aureus in pigs. Vet Microbiol 122:366–372PubMedCrossRefGoogle Scholar
  45. de San Nour, Gasarira ODM-F, Mendonca RD et al (2007) Controlled evaluation of the IDI-MRSA assay for detection of colonization by methicillin-resistant Staphylococcus aureus in diverse musculocutaneous specimens. J Clin Microbiol 45:1098–1101PubMedPubMedCentralCrossRefGoogle Scholar
  46. Denyer SP, Jassim SAA, Stewart GSAB (1991) In vivo bioluminescence for studying the adhesion of bacteria. Biofouling 5(issue 1–2):125–132Google Scholar
  47. Denyer SP, Jassim SAA, Fearon PS et al (1998) Genetically engineered reporter bacteria for the detection of bacteriophage. United States Patent 5723330. http://www.patentgenius.com/patent/5723330.html
  48. Devriese LA, Van Damme LR, Famaree L (1972) Methicillin (cloxacillin) resistant Staphylococcus aureus strains isolated from bovine mastitis cases. Zentralbl Veterinarmed B 19:598–605PubMedCrossRefGoogle Scholar
  49. Dewaele I, De Man I, Stael A et al (2008) Methicillin-resistant Staphylococcus aureus (MRSA) in Belgian pig farms. In: American Society for Microbiology (ASM) conference on antimicrobial resistance in zoonotic bacteria and foodborne pathogens, CopenhagenGoogle Scholar
  50. Diep BA, Otto M (2008) The role of virulence determinants in community-associated MRSA pathogenesis. Trends Microbiol 16:361–369PubMedPubMedCentralCrossRefGoogle Scholar
  51. Doyle ME, Hartmann FA, Lee Wong AC (2012) Methicillin-resistant staphylococci: implications for our food supply? Anim Health Res Rev 13(2):157–180. doi: 10.1017/S1466252312000187 PubMedCrossRefGoogle Scholar
  52. Drees M, Snydman DR, Schmid CH et al (2008) Prior environmental contamination increases the risk of acquisition of vancomycin-resistant enterococci. Clin Infect Dis 46:678–685PubMedCrossRefGoogle Scholar
  53. Embleton ML, Nair SP, Heywood W et al (2005) Development of a novel targeting system for lethal photosensitization of antibiotic-resistant strains of Staphylococcus aureus. Antimicrob Agents Chemother 49(9):3690–3696PubMedPubMedCentralCrossRefGoogle Scholar
  54. Enright MC, Robinson DA, Randle G et al (2002) The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). PNAS 99(11):7687–7692. doi: 10.1073/pnas.122108599 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Fadeyi A, Adeboye MAN, Fowotade A et al (2010) Methicillin Resistant Staphylococcus aureus carriage amongst healthcare workers of the critical care units in a Nigerian hospital. Am J Infect Dis 6(1):18–23CrossRefGoogle Scholar
  56. Falagas ME, Thomaidis PC, Kotsantis IK et al (2011) Airborne hydrogen peroxide for disinfection of the hospital environment and infection control: a systematic review. J Hosp Infect 78:171–177PubMedCrossRefGoogle Scholar
  57. Favrin SJ, Jassim SAA, Griffiths MW (2001) Development and optimization of a novel immunomagnetic separation—bacteriophage assay for the detection of Salmonella enterica Serovar enteritidis in broth. Appl Environ Microbiol 67(1):217–224. doi: 10.1128/AEM.67.1.217-224 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Favrin SJ, Jassim SAA, Griffiths MW (2003) Application of a novel immunomagnetic separation-bacteriophage assay for the detection of Salmonella enteritidis and Escherichia coli O157:H7 in food. Int J Food Microbiol 85(1–2):63–71. doi: 10.1016/S0168-1605(02)00483-X PubMedCrossRefGoogle Scholar
  59. Fenton M, Ross P, McAuliffe O et al (2010) Recombinant bacteriophage lysins as antibacterials. Bioeng Bugs 1(1):9–16PubMedPubMedCentralCrossRefGoogle Scholar
  60. Fenton M, Keary R, McAuliffe O et al (2013) Bacteriophage-derived peptidase CHAPK eliminates and prevents staphylococcal Biofilms. Int J Microbiol 2013(ArticleI D625341):8. http://dx.doi.org/10.1155/2013/625341
  61. Fischetti VA (2008) Bacteriophage lysins as effective antibacterials. Curr Opin Microbiol 11:393–400PubMedPubMedCentralCrossRefGoogle Scholar
  62. Fitzgerald JR (2012) Human origin for livestock-associated methicillin-resistant Staphylococcus aureus. mBio 3(2):e00082-12. doi: 10.1128/mBio.00082-12
  63. Frank U (2003) Prevention and control of methicillin-resistant Staphylococcus aureus (MRSA). In: Fluit AC, Schmitz F-J (eds) MRSA current perspectives. Caister Academic Press, England. ch12, p 317–336. ISBN: 0-954264-5-4Google Scholar
  64. Garcia-Graells C, Antoine J, Larsen J et al (2012) Livestock veterinarians at high risk of acquiring methicillin-resistant Staphylococcus aureus ST398. Epidemiol Infect 140(03):383–389PubMedCrossRefGoogle Scholar
  65. Goodman ER, Platt R, Bass R et al (2008) Impact of an environmental cleaning intervention on the presence of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci on surfaces in intensive care unit rooms. Infect Control Hosp Epidemiol 29(7):593–599PubMedPubMedCentralCrossRefGoogle Scholar
  66. Goodridge LD (2010) Designing phage therapeutics. Curr Pharm Biotechnol 11(1):15–27. doi: 10.2174/138920110790725348 PubMedCrossRefGoogle Scholar
  67. Górski A, Borysowski J, Miedzybrodzki R, Weber-Dabrowska B (2007) Bacteriophages in medicine. In: McGrath S, van Sinderen D (eds) Bacteriophage: genetics and microbiology. Caister Academic Press, Norfolk, UK, pp 125–158Google Scholar
  68. Gorwitz RJ (2008) Understanding the success of methicillin-resistant Staphylococcus aureus strains causing epidemic disease in the community. J Infect Dis 197(2):179–182. doi: 10.1086/523767 PubMedCrossRefGoogle Scholar
  69. Gould FK, Brindle R, Chadwick PR et al (2009) Guidelines (2008) for the prophylaxis and treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in the United Kingdom. J Antimicrob Chemother. doi: 10.1093/jac/dkp065 Google Scholar
  70. Graham P, Lin S, Larson E (2006) A U.S. population-based survey of Staphylococcus aureus colonization. Ann Intern Med 144:318–325PubMedCrossRefGoogle Scholar
  71. Graveland H, Wagenaar JA, Broekhuizen-Stins MJ et al (2008) Methicillin-resistant Staphylococcus aureus (MRSA) in veal calf farmers and veal calves in the Netherlands. In: American Society for Microbiology (ASM) conference on antimicrobial resistance in zoonotic bacteria and foodborne pathogens, Copenhagen. pp 62–63Google Scholar
  72. Graveland H, Duim B, van Duijkeren E et al (2011a) Livestock-associated methicillin-resistant Staphylococcus aureus in animals and humans. Int J Med Microbiol 301:630–634PubMedCrossRefGoogle Scholar
  73. Graveland H, Wagenaar JA, Bergs K et al (2011b) Persistence of livestock associated MRSA CC398 in humans is dependent on intensity of animal contact. PLoS ONE 6:e16830PubMedPubMedCentralCrossRefGoogle Scholar
  74. Gravet A, Rondeau M, Harf-Monteil C et al (1999) Predominant Staphylococcus aureus isolated from antibiotic-associated diarrhea is clinically relevant and produces enterotoxin A and the bicomponent toxin LukE-lukD. J Clin Microbiol 37(12):4012–4019PubMedPubMedCentralGoogle Scholar
  75. Griffeth GC, Morris DO, Abraham JL et al (2008) Screening for skin carriage of methicillin-resistant coagulase-positive staphylococci and Staphylococcus schleiferi in dogs with healthy and inflamed skin. Vet Dermatol 19(3):142–149. doi: 10.1111/j.1365-3164.2008.00663.x PubMedCrossRefGoogle Scholar
  76. Griffith CJ, Cooper RA, Gilmore J et al (2000) An evaluation of hospital cleaning regimes and standards. J Hosp Infect 45(1):19–28PubMedCrossRefGoogle Scholar
  77. Gutiérrez D, Ruas-Madiedo P, Martínez B et al (2014) Effective removal of Staphylococcal biofilms by the endolysin LysH5. PLoS ONE 9(9):e107307. doi: 10.1371/journal.pone.0107307 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Hallin M, Denis O, Deplano A et al (2008) Evolutionary relationships between sporadic and epidemic strains of healthcare-associated methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 14(7):659–669. doi: 10.1111/j.1469-0691.2008.02015.x PubMedCrossRefGoogle Scholar
  79. Hallin M, De Mendonça R, Denis O et al (2011) Diversity of accessory genome of human and livestock-associated ST398 methicillin resistant Staphylococcus aureus strains. Infect Genet Evol 11(2):290–299. doi: 10.1016/j.meegid.2010.10.021 PubMedCrossRefGoogle Scholar
  80. Hanselman BA, Kruth SA, Rousseau J, Weese JS (2009) Coagulase positive staphylococcal colonization of humans and their household pets. Can Vet J 50:954–958PubMedPubMedCentralGoogle Scholar
  81. Hanson BM, Dressler AE, Harper AL et al (2011) Prevalence of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) on retail meat in Iowa. J Infect Public Health 4(4):169–174. doi: 10.1016/j.jiph.2011.06.001 PubMedCrossRefGoogle Scholar
  82. Hasman H, Moodley A, Guardabassi L et al (2010) Spa type distribution in Staphylococcus aureus originating from pigs, cattle and poultry. Vet Microbiol 141:326–331PubMedCrossRefGoogle Scholar
  83. Hayden MK, Bonten MJ, Blom DW et al (2006) Reduction in acquisition of vancomycin-resistant Enterococcus after enforcement of routine environmental cleaning measures. Clin Infect Dis 42:1552–1560PubMedCrossRefGoogle Scholar
  84. Hayden MK, Blom DW, Lyle EA (2008) Risk of hand or glove contamination after contact with patients colonized with vancomycin-resistant enterococcus or the colonized patients’ environment. Infect Control Hosp Epidemiol 29:149–154PubMedCrossRefGoogle Scholar
  85. Hennekinne J-A, De Buyser M-L, Dragacci S (2012) Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol Rev 36(4):815–836. doi: 10.1111/j.1574-6976.2011.00311.x PubMedCrossRefGoogle Scholar
  86. Hope CK, Packer S, Wilson M, Nair SP (2009) The inability of a bacteriophage to infect Staphylococcus aureus does not prevent it from specifically delivering a photosensitizer to the bacterium enabling its lethal photosensitization. J Antimicrob Chemother 64(1):59–61. doi: 10.1093/jac/dkp157 PubMedCrossRefGoogle Scholar
  87. Huang SS, Datta R, Platt R (2006) Risk of acquiring antibiotic-resistant bacteria from prior room occupants. Arch Intern Med 166(18):1945–1951. doi: 10.1001/archinte.166.18.1945 PubMedCrossRefGoogle Scholar
  88. Huber H, Koller S, Giezendanner N et al (2009) Methicillin-resistant Staphylococcus aureus (MRSA) in livestock animals and foods of animal origin in Switzerland. In: American Society for Microbiology (ASM)-ESCMID conference on methicillin-resistant Staphylococci in animals, LondonGoogle Scholar
  89. Huijsdens X, van Dijke B, Spalburg E et al (2006) Community acquired MRSA and pig-farming. Ann Clin Microbiol Antimicrob 5:26. doi: 10.1186/1476-0711-5-26 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Inamatsu T, Ooshima H, Masuda Y (1992) Clinical spectrum of antibiotic associated enterocolitis due to methicillin resistant Staphylococcus aureus. Nihon Rinsho 50(5):1087–1092PubMedGoogle Scholar
  91. Institute for Healthcare Improvement (2014) Reducing MRSA infections: staying one step ahead. http://www.ihi.org/resources/Pages/ImprovementStories/ReducingMRSAInfectionsStayingOneStepAhead.aspx
  92. Jain A, Agarwal J, Bansal S (2004) Prevalence of methicillin-resistant, coagulase-negative staphylococci in neonatal intensive care units: findings from a tertiary care hospital in India. J Med Microbiol 53:941–944. doi: 10.1099/jmm.0.45565-0 PubMedCrossRefGoogle Scholar
  93. Jassim SAA (1989) Aspects of staphylococcal growth, haemolysis and phagocytosis. Ph.D. Thesis. University of Loughborough, UK. ASIN: B001A1RT34Google Scholar
  94. Jassim SAA, Griffiths MW (2007) Evaluation of a rapid microbial detection method via phage lytic amplification assay coupled with Live/Dead fluorochromic stains. Lett Appl Microbiol 44(6):673–678. doi: 10.1111/j.1472-765X.2007.02115.x
  95. Jassim SAA, Limoges RG (2014) Natural solution to antibiotic resistance: bacteriophages ‘The Living Drugs’. World J Microbiol Biotechnol 30(8):2153–2170. doi: 10.1007/s11274-014-1655-7 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Jassim SAA, Salt WG, Stretton RJ (1989) In vitro studies of haemolysis by some staphylococci grown in chemically defined media. J Appl Bacteriol 67(5):511–520PubMedCrossRefGoogle Scholar
  97. Jassim SAA, Ellison A, Denyer SP, Stewart GSAB (1990) In vivo bioluminescence: a cellular reporter for research and industry. J Biolumin Chemilumin 5(2):115–122PubMedCrossRefGoogle Scholar
  98. Jassim SAA, Akoush S, Griffiths MW (1996) Rapid detection using thermal change to monitor infection by host specific bacteriophage. IUFOST Meeting Food Associated Pathogens Uppsala, Sweden, May 1996Google Scholar
  99. Jassim SAA, Abdulamir AS, Abu Bakar F (2010a) Phage-based limulus amoebocyte lysate assay for rapid detection of bacteria. WO2011/098820A1. http://www.lens.org/images/patent/WO/2011098820/A1/WO_2011_098820_A1.pdf
  100. Jassim SAA, Abdulamir AS, Abu Bakar F (2010b) Methods for bacteriophage design. WIPO Patent Application WO2010/064044 A1. http://www.sumobrain.com/patents/wipo/Methods-bacteriophage-design/WO2010064044A1.pdf
  101. Jassim SAA, Abdulamir AS, Abu Bakar F (2012) Novel phage-based bio-processing of pathogenic Escherichia coli and its biofilms. World J Microbiol Biotechnol 28(1):47–60. doi: 10.1007/s11274-011-0791-6 PubMedCrossRefGoogle Scholar
  102. Jevons MP (1961) Celbenin: resistant Staphylococci. Br Med J 1(5219):124–125PubMedCentralCrossRefGoogle Scholar
  103. Jończyk E, Kłak M, Międzybrodzki R, Górski A (2011) The influence of external factors on bacteriophages—review. Folia Microbiol 56(3):191–200. doi: 10.1007/s12223-011-0039-8 CrossRefGoogle Scholar
  104. Jones JW, Carter A, Ewings P, O’Boyle PJ (1999) An MRSA outbreak in a urology ward and its association with Nd:YAG coagulation laser treatment of the prostate. J Hosp Infect 41:39–44PubMedCrossRefGoogle Scholar
  105. Jones TF, Kellum ME, Porter SS et al (2002) An outbreak of community-acquired foodborne illness caused by methicillin-resistant Staphylococcus aureus. Emerg Infect Dis 8:82–84PubMedPubMedCentralCrossRefGoogle Scholar
  106. Johnson AP, Pearson A, Duckworth G (2005) Surveillance and epidemiology of MRSA bacteraemia in the UK. J Antimicrob Chemother 56:455–462PubMedCrossRefGoogle Scholar
  107. Joshi SG, Paff M, Friedman G et al (2010) Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: a biocidal efficacy study of nonthermal dielectric-barrier discharge plasma. Am J Infect Control 38:293–301PubMedCrossRefGoogle Scholar
  108. Juhász-Kaszanyitzky E, Jánosi S, Somogyi P et al (2007) MRSA transmission between cows and humans. Emerg Infect Dis 13(4):630–632PubMedPubMedCentralCrossRefGoogle Scholar
  109. Kadariya J, Smith TC, Thapaliya D (2014) Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. BioMed Res Int 2014:827965. doi: 10.1155/2014/827965 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Kaur S, Harjai K, Chhibber S (2012) Methicillin-resistant Staphylococcus aureus phage plaque size enhancement using sublethal concentrations of antibiotics. Appl Environ Microbiol 78(23):8227–8233. doi: 10.1128/AEM.02371-12 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Kaźmierczak Z, Górski A, Dąbrowska K (2014) Facing antibiotic resistance: Staphylococcus aureus phages as a medical tool. Viruses 6:2551–2570. doi: 10.3390/v6072551 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Kelly D, McAuliffe O, Ross RP, Coffey A (2012) Prevention of Staphylococcus aureus biofilm formation and reduction in established biofilm density using combination of phage K and modified derivatives. Lett Appl Microbiol 54(4):286–291PubMedCrossRefGoogle Scholar
  113. Khanna T, Friendship R, Dewey C, Weese JS (2007) Methicillin resistant Staphylococcus aureus colonization in pigs and pig farmers. Vet Microbiol 128:298–303PubMedCrossRefGoogle Scholar
  114. Klein E, Smith DL, Laxminarayan R (2007) Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999–2005. Emerg Infect Dis 13:1840–1846PubMedPubMedCentralCrossRefGoogle Scholar
  115. Klevens RM, Morrison MA, Nadle J et al (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298:1763–1771PubMedCrossRefGoogle Scholar
  116. Kluytmans J, van Leeuwen W, Goessens W et al (1995) Food-initiated outbreak of methicillin-resistant Staphylococcus aureus analyzed by pheno- and genotyping. J Clin Microbiol 33:1121–1128PubMedPubMedCentralGoogle Scholar
  117. Knudsen AM, Rosdahl VT (1991) The decline of methicillin resistance among Danish Staphylococcus aureus strains. Infect Control Hosp Epidemiol 12:83–88PubMedCrossRefGoogle Scholar
  118. Köck R, Becker K, Cookson B et al (2010) Methicillin-resistant Staphylococcus aureus (MRSA): burden of disease and control challenges in Europe. Euro Surveill 15(41):19688. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19688A
  119. Köck R, Schaumburg F, Mellmann A et al (2013) Livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) as causes of human infection and colonization in Germany. PLoS ONE 8(2):e55040. doi: 10.1371/journal.pone.0055040 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Kodama T, Santo T, Yokoyama T et al (1997) Postoperative enteritis caused by methicillin-resistant Staphylococcus aureus. Surg Today 27(9):816–825. doi: 10.1007/BF02385272 PubMedCrossRefGoogle Scholar
  121. Kramer A, Kampf G (2007) Hand rub-associated fire incidents during 25038 hospital-years in Germany. Infect Control Hosp Epidemiol 28(6):745–746PubMedCrossRefGoogle Scholar
  122. Kramer A, Schwebke I, Kampf G (2006) How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis 6:130. doi: 10.1186/1471-2334-6-130 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Krylov VN (2001) Phagotherapy in terms of bacteriophage genetics: hopes, perspectives, safety, limitations. Genetika 37(7):869–887PubMedGoogle Scholar
  124. Kumar P, Shukla I, Varshney S (2011) Nasal screening of healthcare workers for nasal carriage of coagulase positive MRSA and prevalence of nasal colonization with Staphylococcus aureus. Biol Med 27(1):62–64Google Scholar
  125. Kutateladze M, Adamia R (2010) Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol 28(12):591–595PubMedCrossRefGoogle Scholar
  126. Kutter E, De Vos D, Gvasalia G et al (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11(1):69–86PubMedCrossRefGoogle Scholar
  127. Kwon NH, Park KT, Moon JS et al (2005) Staphylococcal cassette chromosome MEC (SCCMEC) characterization and molecular analysis for methicillin-resistant Staphylococcus aureus and novel SCCMEC subtype IVG isolated from bovine milk in Korea. J Antimicrob Chemother 56:624–632PubMedCrossRefGoogle Scholar
  128. Labandeira-Rey M, Couzon F, Boisset S et al (2007) Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science 315(5815):1130–1135. doi: 10.1126/science.1137165 PubMedCrossRefGoogle Scholar
  129. Lee J (2003) Methicillin (oxacillin)-resistant Staphylococcus aureus strains isolated from major food animals and their potential transmission to humans. Appl Environ Microbiol 69:6489–6494PubMedPubMedCentralCrossRefGoogle Scholar
  130. Lee J (2006) Occurrence of methicillin-resistant Staphylococcus aureus strains from cattle and chicken, and analyses of their mecA, mecR1 and mecI genes. Vet Microbiol 114:155–159PubMedCrossRefGoogle Scholar
  131. Lehner G, Linek M, Bond R et al (2014) Case-control risk factor study of methicillin-resistant Staphylococcus pseudintermedius (MRSP) infection in dogs and cats in Germany. Vet Microbiol 168(1):154–160. doi: 10.1016/j.vetmic.2013.10.023 PubMedCrossRefGoogle Scholar
  132. Leonard F, Abbott Y, Rossney A et al (2006) Methicillin-resistant Staphylococcus aureus isolated from a veterinary surgeon and five dogs in one practice. Vet Rec 158(5):155–159PubMedCrossRefGoogle Scholar
  133. Lim SK, Nam HM, Park HJ et al (2010) Prevalence and characterization of methicillin-resistant Staphylococcus aureus in raw meat in Korea. J Microbiol Biotechnol 20:775–778PubMedGoogle Scholar
  134. Lin J, Yeh KS, Liu HT, Lin JH (2009) Staphylococcus aureus isolated from pork and chicken carcasses in Taiwan: prevalence and antimicrobial susceptibility. J Food Prot 72:608–611PubMedCrossRefGoogle Scholar
  135. Lopez P-J, Ron O, Parthasarathy P et al (2009) Bacterial counts from hospital doctors’ ties are higher than those from shirts. Am J Infect Control 37:79–80PubMedCrossRefGoogle Scholar
  136. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532. doi: 10.1056/NEJM199808203390806 PubMedCrossRefGoogle Scholar
  137. Lozano C, López M, Gómez-Sanz E et al (2009) Detection of methicillin-resistant Staphylococcus aureus ST398 in food samples of animal origin in Spain. J Antimicrob Chemother 64:1325–1326PubMedCrossRefGoogle Scholar
  138. Ma XX, Sun DD, Wang S et al (2011) Nasal carriage of methicillin-resistant Staphylococcus aureus among preclinical medical students: epidemiologic and molecular characteristics of methicillin-resistant S. aureus clones. Diagn Microbiol Infect Dis 70:22–30PubMedCrossRefGoogle Scholar
  139. Malhotra-Kumar S, Haccuria K, Michiels M et al (2008) Current trends in rapid diagnostics for methicillin-resistant Staphylococcus aureus and glycopeptide-resistant enterococcus species. J Clin Microbiol 46(5):1577–1587. doi: 10.1128/JCM.00326-08 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Malik RE, Cooper RA, Griffith CJ (2003) Use of audit tools to evaluate the efficacy of cleaning systems in hospitals. Am J Infect Control 31(3):181–187PubMedCrossRefGoogle Scholar
  141. Malik S, Peng H, Barton MD (2005) Antibiotic resistance in staphylococci associated with cats and dogs. J Appl Microbiol 99(6):1283–1293PubMedCrossRefGoogle Scholar
  142. Marler B (2010) About MRSA (Methicillin-resistant Staphylococcus aureus). Food Poison J. http://www.foodpoisonjournal.com/food-poisoning-information/about-mrsa-methicillinresistant-staphylococcus-aureus/
  143. Martinez JA, Ruthazer R, Hansjosten K et al (2003) Role of environmental contamination as a risk factor for acquisition of vancomycin-resistant Enterococci in patients treated in a medical intensive care unit. Arch Intern Med 163(16):1905–1912PubMedCrossRefGoogle Scholar
  144. May L, Klein EY, Rothman RE, Laxminarayanc R (2014) Trends in antibiotic resistance in coagulase-negative staphylococci in the United States, 1999 to 2012. Antimicrob Agents Chemother 58(3):1404–1409PubMedPubMedCentralCrossRefGoogle Scholar
  145. McAnoy AM (2006) Vaporous decontamination methods: potential uses and research priorities for chemical and biological contamination control. Report number: DSTO-GD-0465. Publisher Human Protection and Performance Division, DSTO Defence Science and Technology Organisation, Commonwealth of Australia. http://dspace.dsto.defence.gov.au/dspace/handle/1947/3415
  146. McCarthy AJ, Witney AA, Gould KA et al (2011) The distribution of mobile genetic elements (MGEs) in MRSA CC398 is associated with both host and country. Genome Biol Evol 3:1164–1174. doi: 10.1093/gbe/evr092 PubMedPubMedCentralCrossRefGoogle Scholar
  147. McIntyre L, Jassim SAA, Griffiths MW (1996) Development of a bacteriophage-mediated ATP bioluminescence detection system for Listeria monocytogenes. Presented at 83rd Annual Meeting of IAMFES, Seattle, WA, June 30–July 3, 1996, p 70Google Scholar
  148. McNamee PT, Smyth JA (2000) Bacterial chondronecrosis with osteomyelitis (femoral head necrosis) of broiler chickens. Avian Pathol 29:253–270. doi: 10.1080/030794500750047243 PubMedCrossRefGoogle Scholar
  149. MDH (Minnesota Department of Health) (2004) Community-associated methicillin resistant Staphylococcus aureus in Minnesota. Dis Control News 32:61–72Google Scholar
  150. Moodley A, Damborg P, Nielsen SS (2014) Antimicrobial resistance in methicillin susceptible and methicillin resistant Staphylococcus pseudintermedius of canine origin: literature review from 1980 to 2013. Vet Microbiol 171(3–4):337–341. doi: 10.1016/j.vetmic.2014.02.008 PubMedCrossRefGoogle Scholar
  151. Moon JS, Lee AR, Kang HM et al (2007) Phenotypic and genetic antibiogram of methicillin resistant staphylococci isolated from bovine mastitis in Korea. J Dairy Sci 90(3):1176–1185PubMedCrossRefGoogle Scholar
  152. Moran GJ, Krishnadasan A, Gorwitz RJ et al (2006) Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med 355(7):666–674PubMedCrossRefGoogle Scholar
  153. Morgan DJ, Rogawski E, Thom KA et al (2012) Transfer of multidrug-resistant bacteria to healthcare workers’ gloves and gowns after patient contact increases with environmental contamination. Crit Care Med 40(4):1045–1051. doi: 10.1097/CCM.0b013e31823bc7c8 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Morioka I, Takahashi N, Kitajima H (2014) Prevalence of MRSA colonization in Japanese neonatal care unit patients in 2011. Pediatr Int 56(2):211–214. doi: 10.1111/ped.12232 PubMedCrossRefGoogle Scholar
  155. Morris D, Mauldin E, O’Shea K et al (2006) Clinical, microbiological, and molecular characterization of methicillin-resistant Staphylococcus aureus infections of cats. Am J Vet Res 67(8):1421–1425PubMedCrossRefGoogle Scholar
  156. Muder RR, Brennen C, Rihs JD et al (2006) Isolation of Staphylococcus aureus from the urinary tract: association of isolation with symptomatic urinary tract infection and subsequent staphylococcal bacteremia. Clin Infect Dis 42(1):46–50. doi: 10.1086/498518 PubMedCrossRefGoogle Scholar
  157. Muto CA, Jernigan JA, Ostrowsky BE et al (2003) SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and enterococcus. Infect Control Hosp Epidemiol 24(5):362–386PubMedCrossRefGoogle Scholar
  158. Mylotte JM, Tayara A, Goodnough S (2002) Epidemiology of bloodstream infection in nursing home residents: evaluation in a large cohort from multiple homes. Clin Infect Dis 35:1484–1490PubMedCrossRefGoogle Scholar
  159. Nakamura S, Yang CS, Sakon N et al (2009) Direct metagenomic detection of viral pathogens in nasal and fecal specimens using an unbiased high-throughput sequencing approach. PLoS ONE 4:e4219PubMedPubMedCentralCrossRefGoogle Scholar
  160. Nemati M, Hermans K, Lipinska U et al (2008) Antimicrobial resistance of old and recent Staphylococcus aureus isolates from poultry: first detection of livestock-associated methicillin-resistant strain ST398. Antimicrob Agents Chemother 52:3817–3819PubMedPubMedCentralCrossRefGoogle Scholar
  161. Nienhoff U, Kadlec K, Chaberny IF et al (2009) Transmission of methicillin-resistant Staphylococcus aureus strains between humans and dogs: two case reports. J Antimicrob Chemother 64(3):660–662PubMedCrossRefGoogle Scholar
  162. Ogawa Y, Saraya T, Koide T et al (2014) Methicillin-resistant Staphylococcus aureus enterocolitis sequentially complicated with septic arthritis: a case report and review of the literature. BMC Res Notes 7:21. doi: 10.1186/1756-0500-7-21 PubMedPubMedCentralCrossRefGoogle Scholar
  163. Okuyama Y, Yoshida N (2012) Staphylococcal food poisoning and MRSA enterocolitis. Nihon Rinsho 70(8):1362–1365PubMedGoogle Scholar
  164. Noskin GA, Rubin RJ, Schentag JJ et al (2005) The burden of Staphylococcus aureus infections on hospitals in the United States: an analysis of the 2000 and 2001 nationwide inpatient sample database. Arch Intern Med 165:1756–1761PubMedCrossRefGoogle Scholar
  165. O’Flaherty S, Ross RP, Meaney W et al (2005) Potential of the polyvalent anti-Staphylococcus bacteriophage K for control of antibiotic-resistant staphylococci from hospitals. App environ microbiol 71:1836–1842. doi: 10.1128/AEM.71.4.1836-1842.2005 CrossRefGoogle Scholar
  166. Olson M, Ceri H, Morck D et al (2002) Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res 66:86–92PubMedPubMedCentralGoogle Scholar
  167. Otter JA, Vickery K, Walker JT et al (2014) Surface-attached cells, biofilms and biocide susceptibility: implications for hospital cleaning and disinfection. J Hosp Infect. doi: 10.1016/j.jhin.2014.09.008 Google Scholar
  168. Pacio GA, Visintainer P, Maguire G et al (2003) Natural history of colonization with vancomycin-resistant enterococci, methicillin-resistant Staphylococcus aureus, and resistant gram-negative bacilli among ling-term-care facility residents. Infect Control Hosp Epidemiol 24:246–250PubMedCrossRefGoogle Scholar
  169. Page K, Wilson M, Parkin IP (2009) Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. J Mater Chem 19:3819–3831. doi: 10.1039/B818698G CrossRefGoogle Scholar
  170. Palavecino E (2004) Community-acquired methicillin-resistant Staphylococcus aureus infections. Clin Lab Med 24(2):403–418PubMedCrossRefGoogle Scholar
  171. Palavecino EL (2014) Clinical, epidemiologic, and laboratory aspects of methicillin-resistant Staphylococcus aureus infections. Meth mol boil 1085:1–24CrossRefGoogle Scholar
  172. Pastagia M, Euler C, Chahales P et al (2011) A novel chimeric lysin shows superiority to mupirocin for skin decolonization of methicillin-resistant and -sensitive Staphylococcus aureus strains. Antimicrob Agents Chemother 55:738–744PubMedCrossRefGoogle Scholar
  173. Pereira V, Lopes C, Castro A et al (2009) Characterization for enterotoxin production, virulence factors, and antibiotic susceptibility of Staphylococcus aureus isolates from various foods in Portugal. Food Microbiol 26(3):278–282PubMedCrossRefGoogle Scholar
  174. Persoons D, Van Hoorebeke S, Hermans K et al (2009) Methicillin-resistant Staphylococcus aureus in poultry. Emerging Infect Dis 15:452–453PubMedPubMedCentralCrossRefGoogle Scholar
  175. Peters PJ, Brooks JT, McAllister SK et al (2013) Methicillin-resistant Staphylococcus aureus colonization of the groin and risk for clinical infection among HIV-infected adults. Emerg Infect Dis 19(4):623–629. doi: 10.3201/eid1904.121353 PubMedPubMedCentralCrossRefGoogle Scholar
  176. Price LB, Steggerb M, Hasman H et al (2012) Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. mBio 3(1):e00305-11Google Scholar
  177. Pu S, Han F, Ge B (2009) Isolation and characterization of methicillin-resistant Staphylococcus aureus strains from Louisiana retail meats. Appl Environ Microbiol 75:265–267. doi: 10.1128/AEM.01110-08 PubMedCrossRefGoogle Scholar
  178. Rashel M, Uchiyama J, Ujihara T et al (2007) Efficient elimination of multidrug-resistant Staphylococcus aureus by cloned lysin derived from bacteriophage phi MR11. J Infect Dis 196(8):1237–1247PubMedCrossRefGoogle Scholar
  179. Rasigade JP, Laurent F, Hubert P et al (2010) Lethal necrotizing pneumonia caused by an ST398 Staphylococcus aureus strain. Emerg Infect Dis 16(8):1330. doi: 10.3201/eid1608.100317 PubMedPubMedCentralCrossRefGoogle Scholar
  180. Rastogi V, Pragya, Verma N et al (2016) An overview on bacteriophages: a natural nanostructured antibacterial agent. Curr Drug Deliv 13(8) (E-pub ahead of print)Google Scholar
  181. Ray AJ, Pultz NJ, Bhalla A et al (2003) Coexistence of vancomycin-resistant enterococci and Staphylococcus aureus in the intestinal tracts of hospitalized patients. Clin Infect Dis 37:875–881. doi: 10.1086/377451 PubMedCrossRefGoogle Scholar
  182. Rubin JE, Gaunt MC (2011) Urinary tract infection caused by methicillin-resistant Staphylococcus pseudintermedius in a dog. Can Vet J 52(2):162–164PubMedPubMedCentralGoogle Scholar
  183. Sass P, Bierbaum G (2007) Lytic activity of recombinant bacteriophage 11 and 12 endolysins on whole cells and biofilms of Staphylococcus aureus. Appl Environ Microbiol 73(1):347–352PubMedCrossRefGoogle Scholar
  184. Schmelcher M, Loessner MJ (2016) Bacteriophage endolysins: applications for food safety. Curr Opin Biotechnol 37:76–87. doi: 10.1016/j.copbio.2015.10.005 PubMedCrossRefGoogle Scholar
  185. Seaman A (2013) Hospital-acquired MRSA infection rates falling: CDC, Reuters. http://www.reuters.com/article/us-hospital-mrsa-idUSBRE98F0X920130916
  186. Sergio D, Koh T, Hsu L et al (2007) Investigation of methicillin-resistant Staphylococcus aureus in pigs used for research. J Med Microbiol 56:1107–1109PubMedCrossRefGoogle Scholar
  187. Schelin J, Wallin-Carlquist N, Thorup Cohn M et al (2011) The formation of Staphylococcus aureus enterotoxin in food environments and advances in risk assessment. Virulence 2(6):580–592. doi: 10.4161/viru.2.6.18122 PubMedPubMedCentralCrossRefGoogle Scholar
  188. Schentag JJ, Hyatt J, Carr J (1998) Genesis of methicillin-resistant Staphylococcus aureus (MRSA). How treatment of MRSA infections has selected for vancomycin-resistant Enterococcus faecium and the importance of antibiotic management and infection control. Clin Infect Dis 26:1204–1214PubMedCrossRefGoogle Scholar
  189. Schijffelen MJ, Boel CH, van Strijp JA, Fluit AC (2010) Whole genome analysis of a livestock-associated methicillin-resistant Staphylococcus aureus ST398 isolate from a case of human endocarditis. BMC Genom 11:376. doi: 10.1186/1471-2164-11-376 CrossRefGoogle Scholar
  190. Schwarz S, Kadlec K, Strommenger B (2007) Methicillin-resistant Staphylococcus aureus and staphylococcus pseudintermedius detected in the BFT-germvet monitoring programme 2004-2006 in Germany. J Antimicrob Chemother 61:282–285PubMedCrossRefGoogle Scholar
  191. Shepheard MA, Fleming VM, Connor TR et al (2013) Historical zoonoses and other changes in host tropism of Staphylococcus aureus, identified by phylogenetic analysis of a population dataset. PLoS ONE 8:e62369. doi: 10.1371/journal.pone.0062369 PubMedPubMedCentralCrossRefGoogle Scholar
  192. Shlaes DM, Gerding DN, John JF (1997) Society for healthcare epidemiology of America and infectious diseases society of America joint committee on the prevention of antimicrobial resistance: guidelines for the prevention of antimicrobial resistance in hospitals. Infect Control Hosp Epidemiol 18:275–2791PubMedCrossRefGoogle Scholar
  193. Siegel JD, Rhinehart E, Jackson M et al (2007) Management of multidrug-resistant organisms in health care settings, 2006. Am J Infect Control 35(10 Suppl 2):S165–S193Google Scholar
  194. Simões M, Simões LC, Vieira MJ (2010) A review of current and emergent biofilm control strategies. Food Sci Technol 43(4):573–583Google Scholar
  195. Simpson WJ, Fernandez JL, Hammond JRM et al (1990) A Highly sensitive assay for adenosine triphosphate employing an improved firefly luciferase reagent. Lett Appl Microbiol 11(4):208–210. doi: 10.1111/j.1472-765X.1990.tb00162.x CrossRefGoogle Scholar
  196. Smith TC, Male MJ, Harper AL et al (2008a) Isolation of methicillin-resistant Staphylococcus aureus (MRSA) from swine in the midwestern United States. In: International conference on emerging infectious diseases, AtlantaGoogle Scholar
  197. Smith TC, Male MJ, Harper AL et al (2008b) Methicillin-resistant Staphylococcus aureus (MRSA) strain ST398 is present in Midwestern US swine and swine workers. PLoS ONE 4:e4258PubMedCrossRefGoogle Scholar
  198. Soejima T, Iida K, Qin T et al (2008) Method to detect only live bacteria during PCR amplification. J Clin Microbiol 46(7):2305–2313. doi: 10.1128/JCM.02171-07 PubMedPubMedCentralCrossRefGoogle Scholar
  199. Son JS, Lee SJ, Jun SY et al (2010) Antibacterial and biofilm removal activity of a podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cell-wall-degrading enzyme. Appl Microbiol Biotechnol 86(5):1439–1449PubMedCrossRefGoogle Scholar
  200. Squier C, Rihs JD, Risa KJ et al (2002) Staphylococcus aureus rectal carriage and its association with infections in patients in a surgical intensive care unit and a liver transplant unit. Infect Control Hosp Epidemiol 23(9):495–501. doi: 10.1086/502095 PubMedCrossRefGoogle Scholar
  201. Stewart GSAB, Jassim SAA, Denyer SP et al (1998) The specific and sensitive detection of bacterial pathogens within 4 h using bacteriophage amplification. J Appl Bacteriol 84(5):777–783. doi: 10.1046/j.1365-2672.1998.00408.x
  202. Stürenburg E (2009) Rapid detection of methicillin-resistant Staphylococcus aureus directly from clinical samples: methods, effectiveness and cost considerations. Ger Med Sci 7:Doc06. doi: 10.3205/000065
  203. Tacconelli E, De Angelis G, Cataldo MA et al (2008) Does antibiotic exposure increase the risk of methicillin-resistant Staphylococcus aureus (MRSA) isolation? A systematic review and meta-analysis. J Antimicrob Chemother 61:26–38PubMedCrossRefGoogle Scholar
  204. Takesue Y, Yokoyama T, Kodama T et al (1991) Toxin involvement in methicillin-resistant Staphylococcus aureus enteritis in gastroenterological surgery. Gastroenterol Jpn 26(6):716–720PubMedGoogle Scholar
  205. Talon D (1999) The role of the hospital environment in the epidemiology of multi-resistant bacteria. J Hosp Infect 43:13–17PubMedCrossRefGoogle Scholar
  206. Ternes YM, Lamaro-Cardoso J, André MCP et al (2013) Molecular epidemiology of coagulase-negative Staphylococcus carriage in neonates admitted to an intensive care unit in Brazil. BMC Infect Dis 13:572. doi: 10.1186/1471-2334-13-572 PubMedPubMedCentralCrossRefGoogle Scholar
  207. Tomlin J, Pead MJ, Lloyd DH et al (1999) Methicillin-resistant Staphylococcus aureus infections in 11 dogs. Vet Rec 144(3):60–64. doi: 10.1136/vr.144.3.60 PubMedCrossRefGoogle Scholar
  208. Toté K, Berghe DV, Deschacht M et al (2009) Inhibitory efficacy of various antibiotics on matrix and viable mass of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Int J Antimicrob Agents 33:525–531PubMedCrossRefGoogle Scholar
  209. USDA-FSIS (2014) Pre-harvest management controls and intervention options for reducing Shiga toxin-producing Escherichia coli shedding in cattle: an overview of current research. http://www.fsis.usda.gov/wps/wcm/connect/d5314cc7-1ef7-4586-bca2-f2ed86d9532f/Reducing-Ecoli-Shedding-in-Cattle.pdf?MOD=AJPERES
  210. van Cleef BA, Graveland H, Haenen APJ et al (2011) Persistence of livestock-associated methicillin-resistant Staphylococcus aureus in field workers after short-term occupational exposure to pigs and veal calves. J Clin Microbiol 49(3):1030–1033. doi: 10.1128/JCM.00493-10 PubMedPubMedCentralCrossRefGoogle Scholar
  211. van der Mee-Marquet N, François P, Domelier-Valentin AS et al (2011) Emergence of unusual bloodstream infections associated with pig-borne-like Staphylococcus aureus ST398 in France. Clin Infect Dis 52(1):152–153. doi: 10.1093/cid/ciq053 PubMedCrossRefGoogle Scholar
  212. van Duijkeren E, Jansen MD, Flemming SC et al (2007) Methicillin-resistant Staphylococcus aureus in pigs with exudative epidermitis. Emerging Infect Dis 13:1408–1410PubMedPubMedCentralCrossRefGoogle Scholar
  213. van Duijkeren E, Ikawaty R, Broekhuizen-Stins M et al (2008) Transmission of methicillin-resistant Staphylococcus aureus strains between different kinds of pig farms. Vet Microbiol 126:383–389PubMedCrossRefGoogle Scholar
  214. van Duijkeren E, Moleman M, Sloet van Oldruitenborgh-Oosterbaan MM et al (2010) Methicillin-resistant Staphylococcus aureus in horses and horse personnel: an investigation of several outbreaks. Vet Microbiol 141(1–2):96–102. doi: 10.1016/j.vetmic.2009.08.009 PubMedCrossRefGoogle Scholar
  215. van Loo IH, Diederen BM, Savelkoul PH et al (2007) Methicillin-resistant Staphylococcus aureus in meat products, the Netherlands. Emerging Infect Dis 13:1753–1755PubMedPubMedCentralCrossRefGoogle Scholar
  216. Vandenesch F, Naimi T, Enright MC et al (2003) Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis 9:978–984PubMedPubMedCentralCrossRefGoogle Scholar
  217. Vanderhaeghen W, Hermans K, Haesebrouck F, Butaye P (2010) Methicillin-resistant Staphylococcus aureus (MRSA) in food production animals. Epidemiol Infect 138(5):606–625. doi: 10.1017/S0950268809991567 PubMedCrossRefGoogle Scholar
  218. Verasa JF, do Carmob LS, Tongc LC et al (2008) A study of the enterotoxigenicity of coagulase-negative and coagulase-positive staphylococcal isolates from food poisoning outbreaks in Minas Gerais, Brazil. Int J Infect Dis 12(4):410–415Google Scholar
  219. Viana D, Selva L, Segura P et al (2007) Genotypic characterization of Staphylococcus aureus strains isolated from rabbit lesions. Vet Microbiol 121:288–298. doi: 10.1016/j.vetmic.2006.12.003 PubMedCrossRefGoogle Scholar
  220. Viertel TM, Ritter K, Horz H-P (2014) Viruses versus bacteria—novel approaches to phage therapy as a tool against multidrug-resistant pathogens. J Antimicrob Chemother 69(9):2326–2336. doi: 10.1093/jac/dku173 PubMedCrossRefGoogle Scholar
  221. Vitale CB, Gross TL, Weese JS (2006) Methicillin-resistant Staphylococcus aureus in cat and owner. Emerging Infect Dis 12(12):1998–2000. doi: 10.3201/eid1212.060725 PubMedPubMedCentralCrossRefGoogle Scholar
  222. Von Eiff C, Arciola CR, Montanaro L et al (2006) Emerging Staphylococcus species as new pathogens in implant infections. Int J Artific Organs 29:360–367Google Scholar
  223. Voss A, Loeffen F, Bakker J et al (2005) Methicillin-resistant Staphylococcus aureus in pig farming. Emerg Infect Dis 11:1965–1966PubMedPubMedCentralCrossRefGoogle Scholar
  224. Wagenaar JA, Yue H, Pritchard J et al (2009) Unexpected sequence types in livestock associated methicillin-resistant Staphylococcus aureus (MRSA): MRSA ST9 and a single locus variant of ST9 in pig farming in China. Vet Microbiol 139:405–409PubMedCrossRefGoogle Scholar
  225. Walker A, Jassim SAA, Holah JT et al (1992) Bioluminescent Listeria monocytogenes provide a rapid assay for measuring biocide efficacy. FEMS Microbiol Lett 91(Issue 3):251–255Google Scholar
  226. Wang R, Braughton KR, Kretschmer D et al (2007) Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med 13(12):1510–1514PubMedCrossRefGoogle Scholar
  227. Wang L, Li Y, Mustapha A (2009) Detection of viable Escherichia coli O157:H7 by ethidium monoazide real-time PCR. J Appl Microbiol 107(5):1719–1728. doi: 10.1111/j.1365-2672.2009.04358.x PubMedCrossRefGoogle Scholar
  228. Weber DJ, Rutala WA, Miller MB et al (2010) Role of hospital surfaces in the transmission of emerging health care-associated pathogens: norovirus, Clostridium difficile, and Acinetobacter species. Am J Infect Control 38(Suppl 1):S25–S33PubMedCrossRefGoogle Scholar
  229. Weese JS (2010) Methicillin-resistant Staphylococcus aureus in animals. ILAR J 51:233–244. doi: 10.1093/ilar.51.3.233 PubMedCrossRefGoogle Scholar
  230. Weese JS, Avery BP, Gow S (2009a) Methicillin-resistant Staphylococcus aureus (MRSA) surveillance in slaughter-age pigs and feedlot cattle. In: American Society for Microbiology (ASM)-ESCMID conference on methicillin-resistant staphylococci in animals, LondonGoogle Scholar
  231. Weese JS, Avery B, Rousseau J, Reid-Smith R (2009b) Methicillin-resistant Staphylococcus aureus contamination of retail meat: Canada. In: American Society for Microbiology (ASM)-ESCMID conference on methicillin resistant staphylococci in animals, LondonGoogle Scholar
  232. Weese JS, Avery BP, Reid-Smith RJ (2010) Detection and quantification of methicillin-resistant Staphylococcus aureus (MRSA) clones in retail meat products. Lett Appl Microbiol 51:338–342. doi: 10.1111/j.1472-765X.2010.02901.x PubMedCrossRefGoogle Scholar
  233. Weese JS, Dick H, Willey BM et al (2006) Suspected transmission of methicillin-resistant Staphylococcus aureus between domestic pets and humans in veterinary clinics and in the household. Vet Microbiol 115(1–3):148–155PubMedCrossRefGoogle Scholar
  234. Weese JS, Sweetman K, Edson H, Rousseau J (2013) Evaluation of minocycline susceptibility of methicillin-resistant Staphylococcus pseudintermedius. Vet Microbiol 162(2–4):968–971. doi: 10.1016/j.vetmic.2012.10.002 PubMedCrossRefGoogle Scholar
  235. Wendlandt S, Schwarz S, Silley P (2013) Methicillin-resistant Staphylococcus aureus: a food-borne pathogen? Annu Rev Food Sci Technol 4:117–139. doi: 10.1146/annurev-food-030212-182653 PubMedCrossRefGoogle Scholar
  236. Witte W, Strommenger B, Stanek C, Cuny C (2007) Methicillin-resistant Staphylococcus aureus ST398 in humans and animals, central Europe. Emerging Infect Dis 13(12):255–258PubMedPubMedCentralCrossRefGoogle Scholar
  237. Whiteley GS, Derry C, Glasbey T (2012) The comparative performance of three brands of portable ATP-bioluminometer intended for use in hospital infection control. Healthcare Infect 17(3):91–97. doi: 10.1071/HI12021 CrossRefGoogle Scholar
  238. WHO (2009) Guidelines on hand hygiene in health care. First global patient safety challenge clean care is safer care. World Health Organization, Geneva. ISBN-13 978-92-4-159790-6Google Scholar
  239. Yeruham I, Elad D, Avidar Y, Goshen T (2006) A herd level analysis of urinary tract infection in dairy cattle. Vet J 171(1):172–176PubMedCrossRefGoogle Scholar
  240. Yokoe DS, Mermel LA, Anderson DJ et al (2008) A compendium of strategies to prevent healthcare-associated infections in acute care hospitals. Infect Control Hosp Epidemiol 29(Suppl 1):S12–S21. doi: 10.1086/591060
  241. Zell C, Resch M, Rosenstein R et al (2008) Characterization of toxin production of coagulase-negative staphylococci isolated from foods and starter cultures. Int J Food Microbiol 127:246–251PubMedCrossRefGoogle Scholar
  242. Zollfrank C, Gutbrod K, Wechsler P et al (2012) Antimicrobial activity of transition metal acid MoO3 prevents microbial growth on material surfaces. Mater Sci Eng, C 32(1):47–54. doi: 10.1016/j.msec.2011.09.010 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Applied Bio Research Inc.WindsorCanada

Personalised recommendations