Bacteriophage Biocontrol in Poultry

  • Sabah A. A. JassimEmail author
  • Richard G. Limoges


This chapter focuses on two foodborne pathogens of contemporary importance in poultry industries: Campylobacter and Salmonella . These two foodborne diseases associated with the consumption of tainted poultry meat and processed products are of public health significance worldwide. We also discuss the development of innovative bacteriophage applications to control foodborne pathogens in the poultry food chain and using novel phage technologies to replace or enhance the effectiveness of antibiotics in food production applications and in poultry feed industries.


Animal farm Bacteriophage Bacterial detection Biocontrol Campylobacter Environment Foodborne pathogens Livestock Multidrug-resistant bacteria Poultry Salmonella 


  1. Abdulamir AS, Jassim SAA, Abu Bakar F (2014) Novel approach of using a cocktail of designed bacteriophages against gut pathogenic E. coli for bacterial load biocontrol. Ann Clin Microbiol Antimicrob 13:39.
  2. Abedon ST (2010) The ‘nuts and bolts’ of phage therapy. Curr Pharm Biotechnol 11:1PubMedCrossRefGoogle Scholar
  3. Abedon ST, Thomas-Abedon C (2010) Phage therapy pharmacology. Curr Pharm Biotechnol 11:28–47PubMedCrossRefGoogle Scholar
  4. Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM (2011) Phage treatment of human infections. Bacteriophage 1:66–85PubMedPubMedCentralCrossRefGoogle Scholar
  5. Adak GK, Long SM, O’Brien SJ (2000) Trends in indigenous foodborne disease and deaths, England and Wales: 1992 to 2000. Gut 51:832–841CrossRefGoogle Scholar
  6. Agunos A, Léger D, Carson C (2012) Review of antimicrobial therapy of selected bacterial diseases in broiler chickens in Canada. Can Vet J 53:1289–1300PubMedPubMedCentralGoogle Scholar
  7. Ahmed MF, Schulz J, Hartung J (2013) Air samplings in a Campylobacter jejuni positive laying hen flock. Ann Agric Environ Med 20(1):16–20Google Scholar
  8. Aldoori AA, Mahdii EF, Abbas AK, Jassim SAA (2015) Bacteriophage biocontrol rescues mice bacteremic of clinically isolated mastitis from dairy cows associated with methicillin-resistant Staphylococcus aureus. Adv Microbiol 5:383–403CrossRefGoogle Scholar
  9. Allen VM, Weaver H, Ridley AM et al (2008) Sources and spread of thermophilic Campylobacter spp. during partial depopulation of broiler chicken flocks. J Food Prot 71:264–270PubMedCrossRefGoogle Scholar
  10. Allen HK, Levine UY, Looft T et al (2013) Treatment, promotion, commotion: antibiotic alternatives in food-producing animals. Trends Microbiol 21:114–119. doi: 10.1016/j.tim.2012.11.001
  11. Atterbury RJ (2009) Bacteriophage biocontrol in animals and meat products. Microbial Biotechnol 2(6):601–612CrossRefGoogle Scholar
  12. Atterbury RJ, Connerton PL, Dodd CE et al (2003a) Isolation and characterization of Campylobacter bacteriophages from retail poultry. Appl Environ Microbiol 69:4511–4518PubMedPubMedCentralCrossRefGoogle Scholar
  13. Atterbury RJ, Connerton PL, Dodd CE et al (2003b) Application of host-specific bacteriophages to the surface of chicken skin leads to a reduction in recovery of Campylobacter jejuni. Appl Environ Microbiol 69:6302–6306PubMedPubMedCentralCrossRefGoogle Scholar
  14. Atterbury RJ, Van Bergen MAP, Ortiz F et al (2007) Bacteriophage therapy to reduce Salmonella colonisation of broiler chickens. Appl Environ Microbiol 73(14):4543–4549PubMedPubMedCentralCrossRefGoogle Scholar
  15. Avens JS, Miller BF (1970) Quantifying bacteria on poultry carcass skin. Poult Sci 49:1309–1315PubMedCrossRefGoogle Scholar
  16. Azeredo J, Sutherland IW (2008) The use of phages for the removal of infectious biofilms. Curr Pharm Biotechnol 9:261–266PubMedCrossRefGoogle Scholar
  17. Bailey JS (1993) Control of Salmonella and Campylobacter in poultry production. A summary of work at Russell Research Center. Poult Sci 72(6):1169–1173PubMedCrossRefGoogle Scholar
  18. Balogh B, Jones JB, Iriarte FB, Momol MT (2010) Phage therapy for plant disease control. Curr Pharm Biotechnol 11:48–57PubMedCrossRefGoogle Scholar
  19. Bardina C, Spricigo DA, Cortés P, Llagostera M (2012) Significance of the bacteriophage treatment schedule in reducing Salmonella colonization of poultry. Appl Environ Microbiol 78(18):6600–6607. doi: 10.1128/AEM.01257-12
  20. Behling RG, Eifert J, Erickson MC et al (2010) Selected pathogens of concern to industrial food processors: infectious, toxigenic, toxico-infectious, selected emerging pathogenic bacteria. In: Kornacki JL (ed) Principles of microbiology troubleshooting in the industrial food processing environment, Chap 2. Springer Science + Business Media, pp 5–61. doi: 10.1007/978-1-4419-5518-0_2
  21. Behravesh B (2008) Salmonellosis, in control of communicable diseases manual, 19th edn. American Public Health Association, pp 535–540Google Scholar
  22. Berndtson E, Emanuelson U, Engvall A, Danielsson-Tham ML (1996) A 1-year epidemiological study of Campylobacters in 18 Swedish chicken farms. Prev Vet Med 26:167–185CrossRefGoogle Scholar
  23. Berrang ME, Northcutt JK, Fletcher DL, Cox NA (2003) Role of dump cage fecal contamination in the transfer of Campylobacter to carcasses of previously negative broilers. J Appl Poult Res 12:190–195CrossRefGoogle Scholar
  24. Berrang ME, Northcutt JK, Dickens JA (2004) The contribution of airborne contamination to Campylobacter counts on defeathered broiler carcasses. J Appl Poult Res 13(1):1–4CrossRefGoogle Scholar
  25. Blasco R, Murphy MJ, Sanders MF, Squirrell DJ (1998) Specific assays for bacteria using phage mediated release of adenylate kinase. J AppI Microbiol 84:661–666CrossRefGoogle Scholar
  26. Breitbart M, Hewson I, Felts B et al (2003) Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol 185:6220–6223PubMedPubMedCentralCrossRefGoogle Scholar
  27. Bren L (2007) Bacteria-eating virus approved as food additive. FDA Consumer 41:20–22PubMedGoogle Scholar
  28. Bruttin A, Brüssow H (2005) Human volunteers receiving E. coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother 49:2874–2878PubMedPubMedCentralCrossRefGoogle Scholar
  29. Calci KR, Burkhardt W, Watkins WD, Rippey SR (1998) Occurrence of male specific bacteriophage in feral and domestic animal wastes, human feces, and human-associated wastewaters. Appl Environ Microbiol 64:5027–5029PubMedPubMedCentralGoogle Scholar
  30. Callewaert L, Walmagh M, Michiels CW, Lavigne R (2011) Food applications of bacterial cell wall hydrolases. Curr Opin Biotechnol 22:164–171PubMedCrossRefGoogle Scholar
  31. Callicott KA, Friðriksdóttir V, Reiersen J et al (2006) Lack of evidence for vertical transmission of Campylobacter spp. in chickens. Appl Environ Microbiol 72:5794–5798Google Scholar
  32. Capita R, Prieto M, Alonso-Calleja C (2004) Sampling methods for microbiological analysis of red meat and poultry carcasses. J Food Prot 67:1303–1308PubMedCrossRefGoogle Scholar
  33. Carlton RM, Noordman WH, Biswas B et al (2005) Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatics analyses, oral toxicity study, and application. Regul Toxicol Pharm 43:301–312CrossRefGoogle Scholar
  34. Carvalho CM, Gannon BW, Halfhide DE et al (2010) The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens. BMC Microbiol 10:232PubMedPubMedCentralCrossRefGoogle Scholar
  35. Carvalho CM, Santos SB, Kropinski AM et al (2012) Phages as therapeutic tools to control major foodborne pathogens: Campylobacter and Salmonella. In: Kurtboke I (ed) Bacteriophages, Chap 10. InTech Europe, Rijeka, pp 180–214Google Scholar
  36. CDC (2005) Outbreaks reported: 1990, 1991; 1992. MMWR 1993Google Scholar
  37. CDC (2007) Multistate outbreak of human Salmonella infections associated with frozen pot pies-United States. Morb Mortal Wkly Rep 57(47):1277–1280Google Scholar
  38. CDC (2013a) Surveillance for foodborne disease outbreaks—United States, 1998–2008. In: MMWR surveillance summaries, vol 62(2).
  39. CDC (2013b) An atlas of Salmonella in the United States, 1968–2011.
  40. Chantarapanont W, Berrang M, Frank JF (2003) Direct microscopic observation and viability determination of Campylobacter jejuni on chicken skin. J Food Prot 66:2222–2230PubMedCrossRefGoogle Scholar
  41. Chantarapanont W, Berrang ME, Frank JF (2004) Direct microscopic observation of viability of Campylobacter jejuni on chicken skin treated with selected chemical sanitizing agent. J Food Prot 67:1146–1152PubMedCrossRefGoogle Scholar
  42. Chhibber S, Kaur S, Kumari S (2008) Therapeutic potential of bacteriophage in treating Klebsiella pneumoniae B5055-mediated lobar pneumonia in mice. J Med Microbiol 57:1508–1513PubMedCrossRefGoogle Scholar
  43. Coffey B, Mills S, Coffey A et al (2010) Phage and their lysins as biocontrol agents for food safety applications. Annu Rev Food Sci Technol 1:449–468PubMedCrossRefGoogle Scholar
  44. Coffey B, Rivas L, Duffy G et al (2011) Assessment of Escherichia coli O157:H7—specific bacteriophages e11/2 and e4/1c in model broth and hide environments. Int J Food Microbiol 147:188–194PubMedCrossRefGoogle Scholar
  45. Cohen N, Ennaji H, Bouchrif B et al (2007) Comparative study of microbiological quality of raw poultry meat at various seasons and for different slaughtering processes in Casablanca (Morocco). J Appl Poult Res 16:502–508CrossRefGoogle Scholar
  46. Coker AO, Isokpehi RD, Thomas BN et al (2002) Human campylobacteriosis in developing countries. Emerg Infect Dis 8:237–244PubMedPubMedCentralCrossRefGoogle Scholar
  47. Coloma J, Cano-Sarabiab M, Oteroa J et al (2015) Liposome-encapsulated bacteriophages for enhanced oral phage therapy against Salmonella spp. Appl Environ Microbiol 81(14):4841–4849. doi: 10.1128/AEM.00812-15
  48. Conner DE, Davis MA, Zhang L (2001) Poultry-borne pathogens: plant considerations. In: Sams AR (ed) Poultry meat processing, Chap 9. CRC Press, Boca Raton, pp 137–158Google Scholar
  49. Connerton PL, Loc-Carrillo CM, Swift C et al (2004) Longitudinal study of Campylobacter jejuni bacteriophages and their hosts from broiler chickens. Appl Environ Microbiol 70:3877–3883PubMedPubMedCentralCrossRefGoogle Scholar
  50. Corry JEL, Atabay HI (2001) Poultry as a source of Campylobacter and related organisms. J Appl Microbiol 90:96S–114SCrossRefGoogle Scholar
  51. Courchesne NM, Parisien A, Lan CQ (2009) Production and application of bacteriophage and bacteriophage-encoded lysins. Recent Pat Biotechnol 3:37–45PubMedCrossRefGoogle Scholar
  52. Coward C, Grant AJ, Swift C et al (2006) Phase-variable surface structures are required for infection of Campylobacter jejuni by bacteriophages. Appl Environ Microbiol 72:4638–4647PubMedPubMedCentralCrossRefGoogle Scholar
  53. Cox NA, Mercuri AJ, Juven BJ et al (1974a) Evaluation of succinic acid and heat to improve the microbiological quality of poultry meat. J Food Sci 39:985–987CrossRefGoogle Scholar
  54. Cox NA, Mercuri AJ, Thomson JE, Gregory DW Jr (1974b) Quality of broiler carcasses as affected by hot water treatments. Poult Sci 53:1566–1571CrossRefGoogle Scholar
  55. Cox NA, Bailey JS, Berrang ME (1996) Extent of Salmonella contamination in breeder hatcheries. Poult Sci 70:416–418CrossRefGoogle Scholar
  56. Cox NA, Richardson LJ, Carson JA et al (2010) Comparison of neck skin excision and whole carcass rinse sampling methods for microbiological evaluation of broiler carcasses before and after immersion chilling. J Food Prot 73:976–980PubMedCrossRefGoogle Scholar
  57. Croci DL, de Medici D, Scalfaro C et al (2000) Determination of enteroviruses, hepatitis A virus, bacteriophages and Escherichia coli in Adriatic Sea mussels. J Appl Microbiol 88(2):293–298PubMedCrossRefGoogle Scholar
  58. Crutchfield SR, Buzby JC, Roberts T, et al (1997) Economic assessment of food safety regulations: The new approach to meat and poultry inspection. Agric Econ Rep No. 755.
  59. Dabrowska K, Switała-Jelen K, Opolski A et al (2005) Bacteriophage penetration in vertebrates. J Appl Microbiol 98:7–13PubMedCrossRefGoogle Scholar
  60. Denyer SP, Jassim SAA, Stewart GSAB (1991) In vivo bioluminescence for studying the adhesion of bacteria. Biofouling 5(1–2):125–132CrossRefGoogle Scholar
  61. Denyer SP, Jassim SAA, Rees CED et al (1998) Genetically engineered reporter bacteria for the detection of bacteriophage. United States Patent 5723330.
  62. Dini C, Islan GA, de Urraza PJ, Castro GR (2012) Novel biopolymer matrices for microencapsulation of phages: enhanced protection against acidity and protease activity. Macromol Biosci 12:1200–1208. doi: 10.1002/mabi.201200109
  63. Dreyfuss MS, Ransom GM, Russell MD et al (2007) Pathogen control in meat and poultry production: implementing the USDA Food Safety and Inspection Service’s Hazard Analysis and Critical Control Point System. In: Simjee S (ed) Infectious disease: foodborne diseases, Chap 15. Humana Press Inc., Totowa, NJ, pp 383–404.
  64. EFSA (2008) Microbiological risk assessment in feeding stuffs for food-producing animals. EFSA J 720:1–84.,3.pdf
  65. EFSA (2009a) The community summary report on trends and sources of zoonoses, zoonotic agents, antimicrobial resistance and foodborne outbreaks in the European Union in 2007. EFSA J 223:111–131Google Scholar
  66. EFSA (2009b) Scientific opinion: the use and mode of action of bacteriophages in food production. Scientific Opinion of the Panel on Biological Hazards (Question No EFSA-Q-2008-400). Endorsed by the BIOHAZ panel for public consultation 22 January 2009. Public consultation 30 January–6 March 2009. 2. EFSA J 1076:1–26. doi: 10.2903/j.efsa.2009.1076
  67. EFSA (2011) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2009. EFSA J 9(3):2090–2105CrossRefGoogle Scholar
  68. EFSA-ECDC report for 2007 (2007) Salmonella remains most common cause of food-borne outbreaks.
  69. El-Shibiny A, Connerton PL, Connerton IF (2005) Enumeration and diversity of Campylobacters and bacteriophages isolated during the rearing cycles of free-range and organic chickens. Appl Environ Microbiol 71(3):1259–1266PubMedPubMedCentralCrossRefGoogle Scholar
  70. El-Shibiny A, Scott A, Timms A et al (2009) Application of a group II Campylobacter bacteriophage to reduce strains of Campylobacter jejuni and Campylobacter coli colonizing broiler chickens. J Food Prot 72(4):733–740PubMedCrossRefGoogle Scholar
  71. Endersen L, Mahony JO, Hill C et al (2014) Phage therapy in the food industry. Annu Rev Food Sci Technol 5:327–349PubMedCrossRefGoogle Scholar
  72. ESR (2016) Bacteriophage biocontrol technology.
  73. European Commission (2002) Risk assessment of food borne bacterial pathogens: quantitative methodology relevant for human exposure assessment. Preliminary report.
  74. FAO (2010) Agribusiness handbook: poultry meat and eggs. Rome, Italy.
  75. FAO-WHO (2009) Salmonella and Campylobacter in chicken meat. Microbiology risk assessment series 19. Meeting report.
  76. Fenton M, Ross P, McAuliffe O et al (2010) Recombinant bacteriophage lysins as antibacterials. Bioengineered Bugs 1(1):9–16PubMedPubMedCentralCrossRefGoogle Scholar
  77. Fenton M, Keary R, McAuliffe O et al (2013) Bacteriophage-derived peptidase CHAPk eliminates and prevents staphylococcal biofilms. Int J Microbiol 2013:625341PubMedPubMedCentralCrossRefGoogle Scholar
  78. Fischer CR, Yoichi M, Unno H, Tanji Y (2004) The coexistence of Escherichia coli serotype O157:H7 and its specific bacteriophage in continuous culture. FEMS Microbiol Lett 241:171–177PubMedCrossRefGoogle Scholar
  79. Fischetti VA (2008) Bacteriophage lysins as effective antibacterials. Curr Opin Microbiol 11:393–400PubMedPubMedCentralCrossRefGoogle Scholar
  80. Foley SL, Lynne AM, Nayak R (2008) Salmonella challenges: prevalence in swine and poultry and potential pathogenicity of such isolates. J Anim Sci 86(E. Suppl.):E149–E162Google Scholar
  81. Friedman CR, Neimann J, Wegener HC, Tauxe RV (2000) Epidemiology of C. jejuni infections in the United States and other industrialized nations. In: Nachamkin I, Blaser MJ (eds) Campylobacter, 2nd edn. American Society for Microbiology, Washington, DC, pp 121–138Google Scholar
  82. Furuse K, Osawa S, Kawashiro J et al (1983) Bacteriophage distribution in human faeces: continuous survey of healthy subjects and patients with internal and leukaemic diseases. J Gen Virol 64(Pt 9):2039–2043PubMedCrossRefGoogle Scholar
  83. Gantois I, Ducatelle R, Pasmans F et al (2009) Mechanisms of egg contamination by Salmonella enteritidis. FEMS Microbiol Rev 33(4):718–738PubMedCrossRefGoogle Scholar
  84. Garcia P, Rodriguez L, Rodriguez A, Martinez B (2010) Food biopreservation: promising strategies using bacteriocins, bacteriophages and endolysins. Trends Food Sci Technol 21:373–382CrossRefGoogle Scholar
  85. Gast RK (2008) Paratyphoid infections. In: Saif YM, Fadly AM, Glisson JR et al (eds) Diseases of poultry, 12th edn. Blackwell Publishing, Ames, Iowa, pp 636–665Google Scholar
  86. Gast RK, Guard-Petter J, Holt PS (2002) Characteristics of Salmonella enteritidis contamination in eggs after oral, aerosol, and intravenous inoculation of laying hens. Avian Dis 46:629–635PubMedCrossRefGoogle Scholar
  87. Georgsson F, Þorkelssonb AE, Geirsdóttira M, et al (2006) The influence of freezing and duration of storage on Campylobacter and indicator bacteria in broiler carcasses. Food Microbiol 23(7):677–683Google Scholar
  88. Gill JJ, Hyman P (2010) Phage choice, isolation and preparation for phage therapy. Curr Pharm Biotechnol 11:2–14PubMedCrossRefGoogle Scholar
  89. Goode D, Allen VM, Barrow PA (2003) Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl Environ Microbiol 69(8):5032–5036PubMedPubMedCentralCrossRefGoogle Scholar
  90. Goodridge LD (2010) Designing phage therapeutics. Curr Pharm Biotechnol 11:1527CrossRefGoogle Scholar
  91. Goodridge L, Abedon ST (2003) Bacteriophage biocontrol and bioprocessing: application of phage therapy to industry. SIM News 53(6):254–262Google Scholar
  92. Grawjewski BA, Kusek JW, Gelfand HM (1985) Development of a bacteriophage typing scheme for Campylobacter jejuni and Campylobacter coli. Epidemiol Infect 104:403–414Google Scholar
  93. Greer GG (2005) Bacteriophage control of foodborne bacteria. J Food Prot 68:1102–1111PubMedCrossRefGoogle Scholar
  94. Greer GG, Dilts BD (2002) Control of Brochothrix thermosphacta spoilage of pork adipose tissue using bacteriophages. J Food Prot 65:861–863PubMedCrossRefGoogle Scholar
  95. Guard-Petter J (2001) The chicken, the egg and Salmonella enteritidis. Environ Microbiol 3:421–430PubMedCrossRefGoogle Scholar
  96. Hagens S, Loessner MJ (2010) Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. Curr Pharm Biotechnol 11:58–68PubMedCrossRefGoogle Scholar
  97. Hald B, Wedderkopp A, Madsen M (2000) Thermophilic Campylobacter spp. in Danish broiler production: a cross-sectional survey and a retrospective analysis of risk factors for occurrence in broiler flocks. Avian Pathol 29:123–131PubMedCrossRefGoogle Scholar
  98. Hale CR, Scallan E, Cronquist AB et al (2012) Estimates of enteric illness attributable to contact with animals and their environments in the United States. Clin Infect Dis 54(Suppl. 5):S472–S479PubMedCrossRefGoogle Scholar
  99. Hammerl JA, Jäckel C, Alter T et al (2014) Reduction of Campylobacter jejuni in broiler chicken by successive application of group II and group III phages. PLoS ONE 9(12):e114785PubMedPubMedCentralCrossRefGoogle Scholar
  100. Hannah JF, Cason JA, Richardson JR et al (2011) Effect of stomaching on numbers of bacteria recovered from chicken skin. Poult Sci 90:491–493PubMedCrossRefGoogle Scholar
  101. Hansson I, Ederoth M, Andersson L et al (2005) Transmission of Campylobacter spp. to chickens during transport to slaughter. J Appl Microbiol 99(5):1149–1157PubMedCrossRefGoogle Scholar
  102. Hansson I, Pudas N, Harbom B, et al (2010) Within-flock variations of Campylobacter loads in caeca and on carcasses from broilers. Int J Food Microbiol 141:51–55Google Scholar
  103. Havelaar AH (1987) Virus, bacteriophages and water purification. Vet Q 9(4):356–360PubMedCrossRefGoogle Scholar
  104. Havelaar AH, Furuse K, Hogeboom WM (1986) Bacteriophages and indicator bacteria in human and animal faeces. J Appl Bacteriol 60:255–262PubMedCrossRefGoogle Scholar
  105. Havelaar AH, Mangen MJ, de Koeijer AA et al (2007) Effectiveness and efficiency of controlling Campylobacter on broiler chicken meat. Risk Anal 27:831–844PubMedCrossRefGoogle Scholar
  106. Herman L, Heyndrickx M, Grijspeerdt K et al (2003) Routes for Campylobacter contamination of poultry meat: epidemiological study from hatchery to slaughterhouse. Epidemiol Infect 131:1169–1180PubMedPubMedCentralCrossRefGoogle Scholar
  107. Hertwig S, Hammerl JA, Appel B, Alter T (2013) Post-harvest application of lytic bacteriophages for biocontrol of foodborne pathogens and spoilage bacteria. Berl Munch Tierarztl Wochenschr 126:357–369PubMedGoogle Scholar
  108. Hibma AM, Jassim SAA, Griffiths MW (1996) In vivo bioluminescence to detect the attachment of L-forms of Listeria monocytogenes to food and clinical contact surfaces. Int J Food Microbiol 33:157–167PubMedCrossRefGoogle Scholar
  109. Hibma AM, Jassim SAA, Griffiths M (1997) Infection and removal of L-forms of Listeria monocytogenes with bred bacteriophage. Int J Food Microbiol 34:197–207PubMedCrossRefGoogle Scholar
  110. Higgins JP, Higgins SE, Guenther KL et al (2005) Use of a specific bacteriophage treatment to reduce Salmonella in poultry products. Poult Sci 84(7):1141–1145PubMedCrossRefGoogle Scholar
  111. Hinton A, Cason JA (2008) Bacterial flora of processed broiler chicken skin after successive washings in mixtures of potassium hydroxide and lauric acid. J Food Prot 71:1707–1713PubMedCrossRefGoogle Scholar
  112. Hodgson K (2013) Bacteriophage therapy. Microbiol Aust 34:28–31CrossRefGoogle Scholar
  113. Hoffmann S, Batz MB, Morris JG Jr (2012) Annual cost of illness and quality-adjusted life year losses in the United States due to 14 foodborne pathogens. J Food Prot 75:1292–1302PubMedCrossRefGoogle Scholar
  114. Holah JT, Taylor JH, Dawson DJ, Hall KE (2002) Biocide use in the food industry and the disinfectant resistance of persistent strains of Listeria monocytogenes and Escherichia coli. J Appl Microbiol 92:111S–120SPubMedCrossRefGoogle Scholar
  115. Hsu FC, Shieh YSC, Sobsey MD (2002) Enteric bacteriophages as potential fecal indicators in ground beef and poultry meat. J Food Prot 65(1):93–99PubMedCrossRefGoogle Scholar
  116. Huang H (1999) Evaluation of culture enrichment for use with Salmonella detection in immunoassay. Int J Food Microbiol 51(2–3):85–94PubMedCrossRefGoogle Scholar
  117. Hue O, Allain V, Laisney MJ et al (2011) Campylobacter contamination of broiler caeca and carcasses at the slaughterhouse and correlation with Salmonella contamination. Food Microbiol 28(5):862–868PubMedCrossRefGoogle Scholar
  118. Humphrey TJ, Mead GC, Rowe B (1988) Poultry meat as a source of human salmonellosis in England and Wales. Epidemiol Infect 100:175–184PubMedPubMedCentralCrossRefGoogle Scholar
  119. Humphrey TJ, Jorgensen F, Mattick KL (2000) Fit to eat? Food scares and safe food production. Microbiol Today 27:10–12Google Scholar
  120. Humphrey TJ, Martin KW, Slader J, Durham K (2001) Campylobacter spp. in the kitchen: spread and persistence. J Appl Microbiol 90:115S–120SCrossRefGoogle Scholar
  121. Humphrey T, Brien OS, Madsen M (2007) Campylobacter as zoonotic pathogens: a food production perspective. Int J Food Microbiol 117:237–257PubMedCrossRefGoogle Scholar
  122. ICMSF (1998) Poultry and poultry products. In: Microorganisms in foods, microbial ecology of food commodities, vol 6. Blackie Academic and Professional, London, pp 75–129Google Scholar
  123. Izat AL, Gardner FA, Denton JH, Golan FA (1988) Incidence and level of Campylobacter jejuni in broiler processing. Poult Sci 67:1568–1572PubMedCrossRefGoogle Scholar
  124. James C, Goksoy EO, Corry JEL, James SJ (2000) Surface pasteurisation of poultry meat using steam at atmospheric pressure. J Food Eng 45:111–117CrossRefGoogle Scholar
  125. James C, James SJ, Hannay N et al (2007) Decontamination of poultry carcasses using steam or hot water in combination with rapid cooling, chilling or freezing of carcass surfaces. Int J Food Microbiol 114(2):195–203PubMedCrossRefGoogle Scholar
  126. Janež N, Loc-Carrillo C (2013) Use of phages to control Campylobacter spp. J Microbiol Meth 95(1):68–75CrossRefGoogle Scholar
  127. Jassim SAA, Griffiths MW (2007) Evaluation of a rapid microbial detection method via phage lytic amplification assay coupled with Live/Dead fluorochromic stains. Lett Appl Microbiol 44:673–678PubMedCrossRefGoogle Scholar
  128. Jassim SAA, Limoges RG (2013) Impact of external forces on cyanophage-host interactions in aquatic ecosystems. World J Microbiol Biotechnol 29(10):1751–1762PubMedCrossRefGoogle Scholar
  129. Jassim SAA, Limoges RG (2014) Natural solution to antibiotic resistance: bacteriophages ‘The Living Drugs’. World J Microbiol Biotechnol 30(8):2153–2170PubMedPubMedCentralCrossRefGoogle Scholar
  130. Jassim SAA, Ellison A, Denyer SP, Stewart GSAB (1990) In vivo bioluminescence: a cellular reporter for research and industry. J Biolumin Chemilumin 5:115–122PubMedCrossRefGoogle Scholar
  131. Jassim SAA, Camprubi S, Tomas JM et al (1993) In vivo bioluminescence for studying bacterial adhesion and in vitro phagocytosis. In: Szalay AA, Kricka LJ, Stanley P (eds) Bioluminescence and chemiluminescence. Wiley, New York, pp 491–495Google Scholar
  132. Jassim SAA, Denyer SP, Stewart GSAB (1995) Selective virus culture. International Patent Application, No. WO9523848.
  133. Jassim SAA, Abdulamir AS, Abu Bakar F (2010) Methods for bacteriophage design. WIPO Patent Application WO2010/064044 A1
  134. Jassim SAA, Abdulamir AS, Abu Bakar F (2011) Phage-based limulus amoebocyte lysate assay for rapid detection of bacteria. WO2011/098820A1Google Scholar
  135. Jassim SAA, Abdulamir AS, Abu Bakar F (2012) Novel phage-based bio-processing of pathogenic Escherichia coli and its biofilms. World J Microbiol Biotechnol 28(1):47–60PubMedCrossRefGoogle Scholar
  136. Javed MA, Ackermann HW, Azeredo J et al (2014) A suggested classification for two groups of Campylobacter myoviruses. Arch Virol 159:181–190PubMedCrossRefGoogle Scholar
  137. Joerger RD (2003) Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poult Sci 82:640–647PubMedCrossRefGoogle Scholar
  138. Jończyk E, Kłak M, Międzybrodzki R, Górski A (2011) The influence of external factors on bacteriophages-review. Folia Microbiol (Praha) 56:191–200. doi: 10.1007/s12223-011-0039-8
  139. Jones JB, Vallad GE, Iriarte FB et al (2012) Considerations for using bacteriophages for plant disease control. Bacteriophage 2(4):208–214PubMedPubMedCentralCrossRefGoogle Scholar
  140. Jorgensen F, Bailey R, Williams S et al (2002) Prevalance and numbers of Salmonella and Campylobacter spp. on raw, whole chickens in relation to sampling methods. Int J Food Microbiol 76:151–164PubMedCrossRefGoogle Scholar
  141. Joshua GW, Guthrie-Irons C, Karlyshev AV, Wren BW (2006) Biofilm formation in Campylobacter jejuni. Microbiology 152:387–396Google Scholar
  142. Kang HW, Kim JW, Jung TS, Woo GJ (2013) wksl3, a new biocontrol agent for Salmonella enterica serovars enteritidis and typhimurium in foods: characterization, application, sequence analysis, and oral acute toxicity study. Appl Environ Microbiol 79(6):1956–1968PubMedPubMedCentralCrossRefGoogle Scholar
  143. Kapperued G, Espeland G, Wahl E et al (2003) Factors associated with increased and decreased risk of Campylobacter infection: a prospective case-control study in Norway. Am J Epidemiol 158:234–242CrossRefGoogle Scholar
  144. Kennedy JE, Wei CI, Oblinger JL (1986) Distribution of coliphages in various foods. J Food Prot 49(12):944–951CrossRefGoogle Scholar
  145. Khakhria R, Lior H (1992) Extended phage-typing scheme for Campylobacter jejuni and Campylobacter coli. Epidemiol Infect 108:403–414PubMedPubMedCentralCrossRefGoogle Scholar
  146. Kim KH, Lee GY, Jang JC et al (2013) Evaluation of Anti-SE bacteriophage as feed additives to prevent Salmonella enteritidis (SE) in broiler. Asian-Aust J Anim Sci 26(3):386–393CrossRefGoogle Scholar
  147. Kittler S, Fischer S, Abdulmawjood A et al (2013) Effect of bacteriophage application on Campylobacter jejuni loads in commercial broiler flocks. Appl Environ Microbiol 79:7525–7533PubMedPubMedCentralCrossRefGoogle Scholar
  148. Kutter E, De Vos D, Gvasalia G et al (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86PubMedCrossRefGoogle Scholar
  149. Lee MD, Newell DG (2006) Campylobacter in poultry: filling an ecological niche. Avian Dis 50:1–9. doi: 10.1637/7474-111605r.1
  150. Levin BR, Bull JJ (2004) Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol 2:166–173PubMedCrossRefGoogle Scholar
  151. Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322:07–131Google Scholar
  152. Li Y, Yang H, Swem BL (2002) Effect of high-temperature inside–outside spray on survival of Campylobacter jejuni attached to prechill chicken carcasses. Poult Sci 81:1371–1377PubMedCrossRefGoogle Scholar
  153. Lillard HS (1986) Role of fimbriae and flagella in the attachment of Salmonella typhimurium to poultry skin. J Food Sci 51:54–56CrossRefGoogle Scholar
  154. Lillard HS (1988) Comparison of sampling methods and implications for bacterial decontamination of poultry carcasses by rinsing. J Food Prot 51:405–408CrossRefGoogle Scholar
  155. Lillard HS (1989) Factors affecting the persistence of Salmonella during the processing of poultry. J Food Prot 52:829–832CrossRefGoogle Scholar
  156. Lim T-H, Lee D-H, Lee Y-N et al (2011) Efficacy of bacteriophage therapy on horizontal transmission of Salmonella gallinarum on commercial layer chickens. Avian Dis 55(3):435–438PubMedCrossRefGoogle Scholar
  157. Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1:111–114PubMedPubMedCentralCrossRefGoogle Scholar
  158. Loc-Carrillo C, Atterbury RJ, El-Shibiny A et al (2005) Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl Environ Microbiol 71(11):6554–6563PubMedPubMedCentralCrossRefGoogle Scholar
  159. Loessner MJ, Rees CE, Stewart GS, Scherer S (1996) Construction of luciferase reporter bacteriophage A511: luxAB for rapid and sensitive detection of viable Listeria cells. Appl Environ Microbiol 62:1133–1140PubMedPubMedCentralGoogle Scholar
  160. Ly-Chatain HM (2014) The factors affecting effectiveness of treatment in phages therapy. Front Microbiol 5:1–7CrossRefGoogle Scholar
  161. Ma Y, Pacan JC, Wang Q et al (2008) Microencapsulation of bacteriophage Felix O1 into chitosanalginate microspheres for oral delivery. Appl Environ Microbiol 74:4799–4805PubMedPubMedCentralCrossRefGoogle Scholar
  162. Ma Y, Pacan JC, Wang Q et al (2012) Enhanced alginate microspheres as means of oral delivery of bacteriophage for reducing Staphylococcus aureus intestinal carriage. Food Hydrocoll 26:434–440CrossRefGoogle Scholar
  163. Mahony J, McAuliffe O, Ross RP, van Sinderen D (2011) Bacteriophages as biocontrol agents of food pathogens. Curr Opin Biotechnol 22:157–163PubMedCrossRefGoogle Scholar
  164. Man SM (2011) The clinical importance of emerging Campylobacter species. Nat Rev Gastroenterol Hepatol 8:669–685PubMedCrossRefGoogle Scholar
  165. Maukonen J, Mättö J, Wirtanen G et al (2003) Methodologies for the characterization of microbes in industrial environments: a review. J Ind Microbiol Biotechnol 30(6):327–356PubMedCrossRefGoogle Scholar
  166. McMeekin TA, Thomas CJ, McCall D (1979) Scanning electron microscopy of microorganisms on chicken skin. J Appl Bacteriol 46:195–200PubMedCrossRefGoogle Scholar
  167. McMeekin TA, Thomas CJ, Pennington PI (1984) Contamination and decontamination of poultry carcass neck tissue. J Food Saf 6:79–88CrossRefGoogle Scholar
  168. Mizoguchi K, Morita M, Fischer CY et al (2003) Coevolution of bacteriophage PP01 and Escherichia coli O157:H7 in continuous culture. Appl Environ Microbiol 69:170–176PubMedPubMedCentralCrossRefGoogle Scholar
  169. Moore JE, Corcoran D, Dooley JS et al (2005) Campylobacter. Vet Res 36:351–382PubMedCrossRefGoogle Scholar
  170. Morrison GJ, Fleet GH (1985) Reduction of Salmonella on chicken carcasses by immersion treatments. J Food Prot 48:939–943CrossRefGoogle Scholar
  171. Nannapaneni R, Soni KA (2015) Use of bacteriophage to remove biofilms of Listeria monocytogenes and other foodborne bacterial pathogens in the food environment. In: Pometto III AL, Demirci A (eds) Biofilms in the food environment, 2nd edn, Chap 5. IFT Press, Wiley Blackwell, Oxford, UK, pp 131–144Google Scholar
  172. Nayak R, Kenney PB, Keswani J, Ritz C (2003) Isolation and characterisation of Salmonella in a turkey production facility. Br Poult Sci 44:192–202PubMedCrossRefGoogle Scholar
  173. Nelson DC, Schmelcher M, Rodriguez-Rubio L et al (2012) Endolysins as antimicrobials. Adv Virus Res 83:299–365PubMedCrossRefGoogle Scholar
  174. Nesbitt A, Ravel A, Murray R et al (2011) Integrated surveillance and potential sources of Salmonella enteritidis in human cases in Canada from 2003 to 2009. Epidemiol Infect 140:1757–1773PubMedPubMedCentralCrossRefGoogle Scholar
  175. Newell DG (2002) The ecology of Campylobacter jejuni in avian and human hosts and in the environment. Int J Infect Dis 6:3516–3521CrossRefGoogle Scholar
  176. Newell DG, Fearnley C (2003) Sources of Campylobacter colonization in broiler chickens. Appl Environ Microbiol 69:4343–4351PubMedPubMedCentralCrossRefGoogle Scholar
  177. Newell D, Wagenaar J (2000) Poultry infections and their control at the farm level. In: Campylobacter, 2nd edn. American Society of Microbiology Press, Washington, DC, pp 497–510Google Scholar
  178. Newell DG, Elvers KT, Dopfer D et al (2011) Biosecurity-based interventions and strategies to reduce Campylobacter sp. on poultry farms. Appl Environ Microbiol 77(24):8605–8614PubMedPubMedCentralCrossRefGoogle Scholar
  179. Notermans S, Kampelmacher EH (1974) Attachment of some bacterial strains to the skin of broiler chickens. Br Poult Sci 15:573–585PubMedCrossRefGoogle Scholar
  180. Notermans S, Kampelmacher EH (1975) Heat destruction of some bacterial strains attached to broiler skin. Br Poult Sci 16:351–361PubMedCrossRefGoogle Scholar
  181. Notermans S, Kampelmacher EH, Van Schothorst M (1975) Studies on sampling methods used in the control of hygiene in poultry processing. J Appl Microbiol 39:55–61Google Scholar
  182. Nyati KK, Prasad KN (2014) Campylobacteriosis and water: an overview. In: Singh PP, Sharma V (eds) Water and health, Chap 8. Springer, Berlin, pp 119–132Google Scholar
  183. O’Flaherty S, Ross RP, Coffey A (2009) Bacteriophage and their lysins for elimination of infectious bacteria. FEMS Microbiol Rev 33:801–819PubMedCrossRefGoogle Scholar
  184. Oda M, Morita M, Unno H, Tanji Y (2004) Rapid detection of Escherichia coli O157:H7 by using green fluorescent protein-labeled PP01 bacteriophage. Appl Environ Microbiol 70(1):527–534PubMedPubMedCentralCrossRefGoogle Scholar
  185. Olsen KN, Lund M, Skov J et al (2009) Detection of Campylobacter bacteria in air samples for continuous real-time monitoring of Campylobacter colonization in broiler flocks. Appl Environ Microbiol 75(7):2074–2078PubMedPubMedCentralCrossRefGoogle Scholar
  186. Panisello PJ, Rooney R, Quantick PC, Stanwell-Smith R (2000) Application of foodborne disease outbreak data in the development and maintenance of HACCP systems. Int J Food Microbiol 59:221–234PubMedCrossRefGoogle Scholar
  187. Parisien A, Allain B, Zhang J et al (2008) Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J Appl Microbiol 104:1–13PubMedGoogle Scholar
  188. Parka H, Hung Y-C, Brackettb RE (2002) Antimicrobial effect of electrolyzed water for inactivating Campylobacter jejuni during poultry washing. Int J Food Microbiol 72(1–2):77–83Google Scholar
  189. Park SC, Nakai T (2003) Bacteriophage control of Pseudomonas plecoglossicida infection in ayu Plecoglossus altivelis. Dis Aquat Org 53:33–39PubMedCrossRefGoogle Scholar
  190. Park SC, Shimamura I, Fukunaga M et al (2000) Isolation of bacteriophages specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for disease control. Appl Environ Microbiol 66:1416–1422PubMedPubMedCentralCrossRefGoogle Scholar
  191. Perales I, Audicana A (1989) The role of hens’ eggs in outbreaks of salmonellosis in north Spain. Int J Food Microbiol 8:175–180PubMedCrossRefGoogle Scholar
  192. Pickering LK (2006) American Academy of Pediatrics, Salmonella infections. Red Book, Report of the Committee on Infectious Diseases, pp 581–584Google Scholar
  193. Purnell G, Mattick K, Humphrey T (2004) The use of ‘hot wash’ treatments to reduce the number of pathogenic and spoilage bacteria on raw retail poultry. J Food Eng 62:29–36CrossRefGoogle Scholar
  194. Rees JC, Voorhees KJ (2005) Simultaneous detection of two bacterial pathogens using bacteriophage amplification coupled with matrix-assisted laser desorption ⁄ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 19:2757–2761PubMedCrossRefGoogle Scholar
  195. Ridley AM, Allen VM, Sharma M et al (2008) Real-time PCR approach for detection of environmental sources of Campylobacter strains colonizing broiler flocks. Appl Environ Microbiol 74:2492–2504PubMedPubMedCentralCrossRefGoogle Scholar
  196. Ridley A, Morris V, Gittins J et al (2011a) Potential sources of Campylobacter infection on chicken farms: contamination and control of broiler-harvesting equipment, vehicles and personnel. J Appl Microbiol 111(1):233–244PubMedCrossRefGoogle Scholar
  197. Ridley AM, Morris VK, Cawthraw SA et al (2011b) Longitudinal molecular epidemiological study of thermophilic Campylobacters on one conventional broiler chicken farm. Appl Environ Microbiol 77:98–107PubMedCrossRefGoogle Scholar
  198. Rindhe SN, Zanjad PN, Doifode VK et al (2008) Assessment of microbial contamination of chicken products sold in Parbhani city. Vet World 1(7):208–210Google Scholar
  199. Riska PF, Su Y, Bardarov S et al (1999) Rapid film-based determination of antibiotic susceptibilities of Mycobacterium tuberculosis strains by using a luciferase reporter phage and the Bronx Box. J Clin Microbiol 37(4):1144–1149PubMedPubMedCentralGoogle Scholar
  200. Rocourt J, Moy G, Vierk K, Schlundt J (2003) The present state of foodborne disease in OECD Countries. WHO, Geneva.
  201. Rosenquist H, Nielsen NL, Sommer HM et al (2003) Quantitative risk assessment of human Campylobacteriosis associated with thermophilic Campylobacter species in chickens. Int J Food Microbiol 83(1):87–103PubMedCrossRefGoogle Scholar
  202. Rosenquist H, Sommer HM, Nielsen NL, Christensen BB (2006) The effect of slaughter operations on the contamination of chicken carcasses with thermotolerant Campylobacter. Int J Food Microbiol 108:226–232PubMedCrossRefGoogle Scholar
  203. Russell SM (2009) Salmonella intervention strategies and testing methods. The poultry site.
  204. Sahin O, Kassem II, Shen Z et al (2015) Campylobacter in poultry: ecology and potential interventions. Avian Dis 59(2):185–200PubMedCrossRefGoogle Scholar
  205. Salama SM, Bolton FJ, Hutchinson DN (1989) Improved method for the isolation of Campylobacter jejuni and Campylobacter coli bacteriophages. Lett Appl Microbiol 8:5–7CrossRefGoogle Scholar
  206. Schmelcher M, Loessner MJ (2016) Bacteriophage endolysins: applications for food safety. Curr Opin Biotechnol 37:76–87 doi: 10.1016/j.copbio.2015.10.005
  207. Seal BS, Lillehoj HS, Donovan, Gay CG (2013) Alternatives to antibiotics: a symposium on the challenges and solutions for animal production. Anim Health Res Rev 1–10. doi: 10.1017/S1466252313000030
  208. Shakeeba W, Hanifi-Moghaddam P, Coleman R et al (2010) Orally administered P22phage tailspike protein reduces Salmonella colonization in chickens: prospects of novel therapy against bacterial infections. PLoS ONE 5:e13904Google Scholar
  209. Sheng H, Knecht HJ, Kudva IT, Hovde CJ (2006) Application of bacteriophages to control intestinal Escherichia coli O157:H7 levels in ruminants. Appl Environ Microbiol 72:5359–5366PubMedPubMedCentralCrossRefGoogle Scholar
  210. Sherman M (2008) Bacteriophages: beyond antibiotics. US Pharmacist 33:46–51Google Scholar
  211. Sillankorva S, Neubauer P, Azeredo J (2008) Isolation and characterization of a T7-like lytic phage for Pseudomonas fluorescens. BMC Biotechnol 8:1–11CrossRefGoogle Scholar
  212. Sillankorva SM, Oliveira H, Azeredo J (2012) Bacteriophages and their role in food safety. Int J Microbiol. Article ID 863945. doi: 10.1155/2012/863945
  213. Simmons M, Fletcher DI, Cason JA, Berrang ME (2003) Recovery of Salmonella from retail broiler by a whole-carcass enrichment procedure. J Food Prot 66:446–450PubMedCrossRefGoogle Scholar
  214. Sklar IB, Joerger RD (2001) Attempts to utilize bacteriophage to combat Salmonella enterica serovar enteritidis infection in chickens. J Food Saf 21(1):15–29CrossRefGoogle Scholar
  215. Skurnik M, Pajunen M, Kiljunen S (2007) Biotechnological challenges of phage therapy. Biotechnol Lett 29:995–1003PubMedCrossRefGoogle Scholar
  216. Smith HW, Huggins MB (1982) Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. J Gen Microbiol 128:307–318PubMedGoogle Scholar
  217. Smith HW, Huggins MB, Shaw KM (1987) The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. J Gen Microbiol 133:1111–1126PubMedGoogle Scholar
  218. Sobel J, Griffin PM, Slutsker L et al (2002) Investigation of multistate foodborne disease outbreaks. Public Health Rep 117:8–19PubMedPubMedCentralCrossRefGoogle Scholar
  219. Son JS, Jun SY, Kim EB et al (2010) Complete genome sequence of a newly isolated lytic bacteriophage, EFAP-1 of Enterococcus faecalis, and antibacterial activity of its endolysin EFAL-1. J Appl Microbiol 108:1769–1779PubMedCrossRefGoogle Scholar
  220. Sorensen MC, van Alphen LB, Harboe A et al (2011) Bacteriophage F336 recognizes the capsular phosphoramidate modification of Campylobacter jejuni NCTC11168. J Bacteriol 193:6742–6749PubMedPubMedCentralCrossRefGoogle Scholar
  221. Stafford RJ, Schluter P, Kirk M et al (2007) A multi-centre prospective case-control study of Campylobacter infection in persons aged 5 years and older in Australia. Epidemiol Infect 135(6):978–988PubMedCrossRefGoogle Scholar
  222. Stanford K, McAllister TA, Niu YD et al (2010) Oral delivery systems for encapsulated bacteriophages targeted at Escherichia coli O157:H7 in feedlot cattle. J Food Prot 73(7):1304–1312PubMedCrossRefGoogle Scholar
  223. Stewart GSAB, Jassim SAA, Denyer SP (1993) Engineering microbial bioluminescence and biosensor applications. In: Rapley R, Walker MR (eds) Molecular diagnostics, Chap 27. Blackwell Scientific Publications, Oxford, pp 403–423Google Scholar
  224. Stone R (2002) Bacteriophage therapy. Stalin’s forgotten cure. Science 298:728–731PubMedCrossRefGoogle Scholar
  225. Suárez VB, Quiberoni A, Binetti AG, Reinheimer JA (2002) Thermophilic lactic acid bacteria phages isolated from Argentinian dairy industries. J Food Prot 65(10):1597–1604PubMedCrossRefGoogle Scholar
  226. Sulakvelidze A (2011) Safety by nature: potential bacteriophage applications. Microbe 6(3):122–126Google Scholar
  227. Sulakvelidze A (2013) Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens. J Sci Food Agric 93:3137–3146PubMedCrossRefGoogle Scholar
  228. Sulakvelidze A, Alavidze Z, Morris JG Jr (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659PubMedPubMedCentralCrossRefGoogle Scholar
  229. Suresh T, Hatha AAM, Screenivasa D (2006) Prevalence and antimicrobial resistance of Salmonella enteritidis and other Salmonella in the eggs and egg-storing trays from retails markets of Coimbatore, South India. Food Microbiol 23(3):294–299PubMedCrossRefGoogle Scholar
  230. Taitt CR, Shubin YS, Angel R (2004) Detection of Salmonella enterica Serovar typhimurium by using a rapid, array-based immunosensor. Appl Environ Microbiol 70(1):152–158PubMedPubMedCentralCrossRefGoogle Scholar
  231. Tam CC, Higgins CD, Neal KR et al (2009) Chicken consumption and use of acid-suppressing medications as risk factors for Campylobacter enteritis, England. Emerg Infect Dis 15:1402–1408PubMedPubMedCentralCrossRefGoogle Scholar
  232. Tanji Y, Shimada T, Yoichi M et al (2004) Toward rational control of Escherichia coli O157:H7 by a phage cocktail. Appl Microbiol Biotechnol 64:270–274PubMedCrossRefGoogle Scholar
  233. Tauxe RV, Doyle MP, Kuchenmüller T et al (2010) Evolving public health approaches to the global challenge of foodborne infection. Int J Food Microbiol 139:16–28CrossRefGoogle Scholar
  234. Tessari ENC, Kanashiro AMI, Stoppa GFZ et al (2012) Important aspects of Salmonella in the poultry industry and in public health. In: Mahmoud BSM (ed) Salmonella—a dangerous foodborne pathogen. Publisher InTech, pp 181–206
  235. Thomson JE, Cox NA, Whitehead WK, Mercuri AJ (1974) Effect of hot spray washing on broiler carcass quality. Poult Sci 53:946–952CrossRefGoogle Scholar
  236. Thong KL, NgeoW Y, Altwegg M et al (1995) Molecular analysis of Salmonella enteritidis by pulsed-field gel electrophoresis and ribotyping. J Clin Microbiol 33(5):1070–1074PubMedPubMedCentralGoogle Scholar
  237. Todd EC (1989) Preliminary estimates of costs of foodborne disease in the United States. J Food Prot 52:595–601CrossRefGoogle Scholar
  238. Trachoo N, Frank JF, Stern NJ (2002) Survival of Campylobacter jejuni in biofilms isolated from chicken houses. J Food Prot 65:1110–1116PubMedCrossRefGoogle Scholar
  239. Ulitzur S, Kuhn J (1987) Introduction of lux genes into bacteria, a new approach for specific determination of bacteria and their antibiotics susceptibility. In: Scholmerich J, Andreesen R, Kapp A et al (eds) Bioluminescence and chemiluminescence: new perspectives. Wiley, Chichester, pp 463–472Google Scholar
  240. Ulitzur S, Kuhn J (1989) Detection and/or identification of microorganisms in a test sample using bioluminescence or other exogenous genetically introduced marker. US patent 4,861,70Google Scholar
  241. US FDA/CFSAN (2006) Agency Response Letter, GRAS Notice No. 000198.
  242. US FDA/CFSAN (2007) Agency Response Letter, GRAS Notice No. 000218.
  243. USDA-FSIS (2014) Pre-harvest management controls and intervention options for reducing Shiga toxin-producing Escherichia coli shedding in cattle: an overview of current research.
  244. Van de Giessen AW, Tilburg JJ, Ritmeester WS, Van der Plas J (1998) Reduction of Campylobacter infections in broiler flocks by application of hygiene measures. Epidemiol Infect 121:57–66PubMedPubMedCentralCrossRefGoogle Scholar
  245. Velge P, Cloeckeart A, Barrow P (2005) Emergence of Salmonella epidemics: the problem related to Salmonella enterica serotype enteritidis and multiple antibiotic resistance in other major serotypes. Vet Res 36:267–288PubMedCrossRefGoogle Scholar
  246. Verheust C, Pauwels K, Mahillon J et al (2010) Contained use of bacteriophages: risk assessment and biosafety recommendations. Appl Biosaf 15(1):32–44CrossRefGoogle Scholar
  247. Viazis S, Akhtar M, Feirtag J, Diez-Gonzalez F (2011) Reduction of Escherichia coli O157:H7 viability on hard surfaces by treatment with a bacteriophage mixture. Int J Food Microbiol 145:37–42PubMedCrossRefGoogle Scholar
  248. Wagenaar JA, Van Bergen MA, Mueller MA et al (2005) Phage therapy reduces Campylobacter jejuni colonization in broilers. Vet Microbiol 109(3–4):275–283PubMedCrossRefGoogle Scholar
  249. Wagenaar JA, Mevius DJ, Havelaar AH (2006) Campylobacter in primary animal production and control strategies to reduce the burden of human campylobacteriosis. Rev sci tech Off int Epiz 25(2):581–594Google Scholar
  250. Walker A, Jassim SAA, Holah JT et al (1992) Bioluminescent Listeria monocytogenes provide a rapid assay for measuring biocide efficacy. FEMS Microbiol Lett 70:251–256PubMedCrossRefGoogle Scholar
  251. Waseh S, Hanifi-Moghaddam P, Coleman R et al (2010) Orally administered P22 phage tailspike protein reduces Salmonella colonization in chickens: prospects of a novel therapy against bacterial infections. PLoS ONE 5:e13904PubMedPubMedCentralCrossRefGoogle Scholar
  252. Whichard JM, Sriranganathan N, Pierson FW (2003) Suppression of Salmonella growth by wild-type and large-plaque variants of bacteriophage Felix O1 in liquid culture and on chicken frankfurters. J Food Prot 66(2):220–225PubMedCrossRefGoogle Scholar
  253. Whitman PA, Marshall RT (1971) Characterization of two psychrophilic Pseudomonas bacteriophages isolated from ground beef. Appl Microbiol 22:463–468PubMedPubMedCentralGoogle Scholar
  254. WHO (2001) Biomarkers in risk assessment: validity and validation. Environmental health criteria—EHC 222, Geneva, SwitzerlandGoogle Scholar
  255. WHO (2013) The global view of Campylobacteriosis. Report of expert consultation. Utrecht, Netherlands, 9–11 July 2012Google Scholar
  256. Wilson DJ, Gabriel E, Leatherbarrow AJ et al (2008) Tracing the source of Campylobacteriosis. PLoS Genet 4(9):e1000203PubMedPubMedCentralCrossRefGoogle Scholar
  257. Withey S, Cartmell E, Avery LM, Stephenson T (2005) Bacteriophages-potential for application in wastewater treatment processes. Sci Total Environ 339(1–3):1–18PubMedCrossRefGoogle Scholar
  258. Woolhouse M, Ward M, van Bunnik B, Farrar J (2015) Antimicrobial resistance in humans, livestock and the wider environment. Phil Trans R Soc B 370:20140083. doi: 10.1098/rstb.2014.0083
  259. Yang H, Li Y, Johnson MG (2001) Survival and death of Salmonella typhimurium and Campylobacter jejuni in processing water and on chicken skin during poultry scalding and chilling. J Food Prot 64:770–776PubMedCrossRefGoogle Scholar
  260. Yemini M, Levi Y, Yagil E, Rishpon J (2007) Specific electrochemical phage sensing for Bacillus cereus and Mycobacterium smegmatis. Bioelectrochemistry 70:180–184PubMedCrossRefGoogle Scholar
  261. Young R (1992) Bacteriophage lysis: mechanism and regulation. Microbiol Rev 56:430–481PubMedPubMedCentralGoogle Scholar
  262. Zhang L, Jeong JY, Janardhanan KK et al (2011) Microbiological quality of water immersion-chilled and air-chilled broilers. J Food Prot 74:1531–1535PubMedCrossRefGoogle Scholar
  263. Zimmer M, Vukov N, Scherer S, Loessner MJ (2002) The murein hydrolase of the bacteriophage 3626 dual lysis system is active against all tested Clostridium perfringens trains. Appl Environ Microbiol 68:5311–5317PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Applied Bio Research Inc.WindsorCanada

Personalised recommendations