Skip to main content

Utilization of Deep Reinforcement Learning for Saccadic-Based Object Visual Search

  • Conference paper
  • First Online:
Automation 2017 (ICA 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 550))

Included in the following conference series:

Abstract

The paper focuses on the problem of learning saccades enabling visual object search. The developed system combines reinforcement learning with a neural network for learning to predict the possible outcomes of its actions. We validated the solution in three types of environment consisting of (pseudo)-randomly generated matrices of digits. The experimental verification is followed by the discussion regarding elements required by systems mimicking the fovea movement and possible further research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yarbus, A.L.: Eye movements during perception of complex objects. In: Eye Movement and Vision, pp. 171–211. Plenum Press, New York (1967)

    Google Scholar 

  2. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: a survey. Int. J. Robot. Res. (2013). 0278364913495721

    Google Scholar 

  3. Abbeel, P., Coates, A., Quigley, M., Ng, A.Y.: An application of reinforcement learning to aerobatic helicopter flight. Adv. Neural Inf. Process. Syst. 19, 1 (2007)

    Google Scholar 

  4. Wawrzyński, P.: Reinforcement learning with experience replay for model-free humanoid walking optimization. Int. J. Humanoid Rob. 11(03), 1450024 (2014)

    Article  Google Scholar 

  5. Tesauro, G.: Temporal difference learning and td-gammon. Commun. ACM 38(3), 58–68 (1995)

    Article  Google Scholar 

  6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  7. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  8. Koutník, J., Cuccu, G., Schmidhuber, J., Gomez, F.: Evolving large-scale neural networks for vision-based reinforcement learning. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 1061–1068. ACM (2013)

    Google Scholar 

  9. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  10. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  11. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor policies. J. Mach. Learn. Res. 17(39), 1–40 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement learning for robotic manipulation. arXiv preprint arXiv:1610.00633 (2016)

  13. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  14. Watkins, C.J.C.H.: Learning from delayed rewards. Ph.D. thesis, University of Cambridge England (1989)

    Google Scholar 

  15. Najemnik, J., Geisler, W.S.: Optimal eye movement strategies in visual search. Nature 434(7031), 387–391 (2005)

    Article  Google Scholar 

  16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  17. Le, Q.V., Jaitly, N., Hinton, G.E.: A simple way to initialize recurrent networks of rectified linear units. arXiv preprint arXiv:1504.00941 (2015)

  18. Mnih, V., Heess, N., Graves, A., et al.: Recurrent models of visual attention. In: Advances in Neural Information Processing Systems, pp. 2204–2212 (2014)

    Google Scholar 

  19. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. arXiv preprint arXiv:1410.5401 (2014)

  20. Rocki, K.M.: Surprisal-driven feedback in recurrent networks. arXiv preprint arXiv:1608.06027 (2016)

Download references

Acknowledgments

The authors kindly acknowledge the support of DARPA through the grant “Saccadic Vision and Hierarchical Temporal Memory”, contract no. N66001-15-C-4034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Kornuta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kornuta, T., Rocki, K. (2017). Utilization of Deep Reinforcement Learning for Saccadic-Based Object Visual Search. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2017. ICA 2017. Advances in Intelligent Systems and Computing, vol 550. Springer, Cham. https://doi.org/10.1007/978-3-319-54042-9_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54042-9_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54041-2

  • Online ISBN: 978-3-319-54042-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics