Skip to main content

Development of Vertical Movement Controller for Multirotor UAVs

  • Conference paper
  • First Online:
Book cover Automation 2017 (ICA 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 550))

Included in the following conference series:

Abstract

In this paper, a vertical velocity controller for multirotor UAVs is proposed. Based on the previous research, authors developed a model of vertical movement which takes into consideration measurement noises, and designed a simulation that allowed tuning of mentioned controller. As a regulation scheme, a classical PI structure was used. The derivative part was neglected because of high amplitude of noise during harsh touchdowns. Tuning of parameters was achieved by PSO optimisation. Experimental results showed that the selected control structure and its parameters fulfill stated requirements. In addition, developed simulation is adequate to the real platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bondyra, A., Gardecki, S., Ga̧sior, P.: A distributed control system for multirotor aerial platforms. Measur. Autom. Monit. 61(7), 343–345 (2015)

    Google Scholar 

  2. Bondyra, A., Gardecki, S., Gąsior, P., Kasiński, A.: Falcon: a compact multirotor flying platform with high load capability. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Progress in Automation, Robotics and Measuring Techniques. AISC, vol. 351, pp. 35–44. Springer, Cham (2015). doi:10.1007/978-3-319-15847-1_4

    Google Scholar 

  3. Bondyra, A., Gardecki, S., Ga̧sior, P., Giernacki, W.: Performance of coaxial propulsion in design of multi-rotor UAVs. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Challenges in Automation, Robotics and Measurement Techniques. AISC, vol. 440, pp. 523–531. Springer, Cham (2016). doi:10.1007/978-3-319-29357-8_46

    Chapter  Google Scholar 

  4. Fernandes, A.S., Brand, A.S., Villarreal, E.R.L., et al.: A comparative study of altitude and yaw controllers for rotorcraft UAV. In: 2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS), pp. 411–418. IEEE (2015)

    Google Scholar 

  5. Ga̧sior, P., Bondyra, A., Gardecki, S., Giernacki, W.: Robust estimation algorithm of altitude and vertical velocity for multirotor UAVs. In: 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 714–719. IEEE (2016)

    Google Scholar 

  6. Ga̧sior, P., Bondyra, A., Gardecki, S., Giernacki, W., Kasiński, A.: Thrust estimation by fuzzy modeling of coaxial propulsion unit for multirotor UAVs. In: 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 13–18. IEEE (2016)

    Google Scholar 

  7. Gąsior, P., Gardecki, S., Gośliński, J., Giernacki, W.: Estimation of altitude and vertical velocity for multirotor aerial vehicle using Kalman filter. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Recent Advances in Automation, Robotics and Measuring Techniques. AISC, vol. 267, pp. 377–385. Springer, Cham (2014). doi:10.1007/978-3-319-05353-0_36

    Chapter  Google Scholar 

  8. Gonzalez-Hernandez, I., Salazar, S., Lopez, R., Lozano, R.: Altitude control improvement for a quadrotor UAV using integral action in a sliding-mode controller. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 711–716. IEEE (2016)

    Google Scholar 

  9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, Proceedings, vol. 4, pp. 1942–1948, November 1995

    Google Scholar 

  10. Li, B., Harvey, B., Gallagher, T.: Using barometers to determine the height for indoor positioning. In: 2013 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–7. IEEE (2013)

    Google Scholar 

  11. Liu, H., Liu, M., Wei, X., Song, Q., Ge, Y., Wang, F.: Auto altitude holding of quadrotor UAVs with Kalman filter based vertical velocity estimation. In: 2014 11th World Congress on Intelligent Control and Automation (WCICA), pp. 4765–4770. IEEE (2014)

    Google Scholar 

  12. Min, B.C., Hong, J.H., Matson, E.T.: Adaptive robust control (ARC) for an altitude control of a quadrotor type UAV carrying an unknown payloads. In: 2011 11th International Conference on Control, Automation and Systems (ICCAS), pp. 1147–1151. IEEE (2011)

    Google Scholar 

  13. Nakanishi, H., Kanata, S., Sawaragi, T.: Measurement model of barometer in ground effect of unmanned helicopter and its application to estimate terrain clearance. In: 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, pp. 232–237. IEEE (2011)

    Google Scholar 

  14. Noaa, U.: US Air Force: US standard atmosphere, 1976. Technical report, NOAA-S/T (1976)

    Google Scholar 

  15. Pedersen, M.E.H.: Good parameters for particle swarm optimization. Hvass Lab., Copenhagen, Denmark, Technical report HL1001 (2010)

    Google Scholar 

  16. Sharf, I., Nahon, M., Harmat, A., Khan, W., Michini, M., Speal, N., Trentini, M., Tsadok, T., Wang, T.: Ground effect experiments and model validation with Draganflyer X8 rotorcraft. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1158–1166. IEEE (2014)

    Google Scholar 

  17. Wang, C., Li, W., Chen, W., Wang, Y., Liu, M., Gao, F.: Autonomous landing control of quadrotor UAVs. In: 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 276–280. IEEE (2015)

    Google Scholar 

  18. Wang, W., Ma, H., Sun, C.: A combined MRSMC/MBC altitude controller for a quad-rotor UAV. In: Sun, C., Fang, F., Zhou, Z.-H., Yang, W., Liu, Z.-Y. (eds.) IScIDE 2013. LNCS, vol. 8261, pp. 731–739. Springer, Heidelberg (2013). doi:10.1007/978-3-642-42057-3_92

    Chapter  Google Scholar 

  19. Wei, S., Dan, G., Chen, H.: Altitude data fusion utilising differential measurement and complementary filter. IET Sci. Measur. Technol. 10, 874–879 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemysław Ga̧sior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ga̧sior, P., Bondyra, A., Gardecki, S. (2017). Development of Vertical Movement Controller for Multirotor UAVs. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds) Automation 2017. ICA 2017. Advances in Intelligent Systems and Computing, vol 550. Springer, Cham. https://doi.org/10.1007/978-3-319-54042-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54042-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54041-2

  • Online ISBN: 978-3-319-54042-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics