Optimized and Reconfigurable Environment for Simulation of Legged Robots

  • Mateusz Spis
  • Adam Matecki
  • Patryk Maik
  • Adam Kurzawa
  • Marek Kopicki
  • Dominik Belter
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 550)

Abstract

The paper presents a reconfigurable simulator of legged robots. The simulator is based on the physics engines which model the motion of rigid bodies. The goal of this research is to design reliable tool for verification new control concepts for various types of legged robots. To this end, the new architecture of robot’s configuration scheme is proposed. The new hierarchical structure of the description files allows to re-use mechanical parts of existing robots and rapidly prototype new mechanical systems. We also propose the optimization method which increases the stability of the simulator. The simulator tuning technique allows to find the set of parameters and reduce the discrepancy between the simulated and the real robot.

Keywords

Legged robots Dynamics simulation Evolutionary optimization 

Notes

Acknowledgments

D. Belter is supported by the Poznań University of Technology grant DSMK/0154-2016.

References

  1. 1.
    Belter, D., Skrzypczyński, P., Walas, K., Wlodkowic, D.: Affordable multi-legged robots for research and STEM education: a case study of design and technological aspects. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Progress in Automation, Robotics and Measuring Techniques. AISC, vol. 351, pp. 23–34. Springer, Cham (2015). doi: 10.1007/978-3-319-15847-1_3 Google Scholar
  2. 2.
    Belter, D., Walas, K.: A compact walking robot – flexible research and development platform. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Recent Advances in Automation, Robotics and Measuring Techniques. AISC, vol. 267, pp. 343–352. Springer, Cham (2014). doi: 10.1007/978-3-319-05353-0_33 CrossRefGoogle Scholar
  3. 3.
    Belter, D., Skrzypczyński, P., Walas, K., Fankhauser, P., Gehring, C., Hutter, M., Hoepflinger, M., Siegwart, R.: Dynamic simulation of legged robots using a physics engine. In: Kozłowski, K., et al. (eds.) Mobile Service Robotics, pp. 567–574. World Scientific, Singapore (2014)CrossRefGoogle Scholar
  4. 4.
    Belter, D., Skrzypczyński, P.: A biologically inspired approach to feasible gait learning for a hexapod robot. Int. J. Appl. Math. Comput. Sci. 20(1), 69–84 (2010)CrossRefMATHGoogle Scholar
  5. 5.
    Bender, J., Erleben, K., Trinkle, J., Cotmans, E.: interactive simulation of rigid body dynamics in computer graphics. In: Eurographics, Cagliari (2012)Google Scholar
  6. 6.
    Boeing, A., Bräunl, T.: Evaluation of real-time physics simulation systems. In: GRAPHITE 2007, Perth, pp. 281–288 (2007)Google Scholar
  7. 7.
    Bullet physics library (2016). www.bulletphysics.org
  8. 8.
    Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: a robot simulator for research and education. In: 2007 IEEE International Conference on Robotics and Automation, pp. 1400–1405 (2007)Google Scholar
  9. 9.
    Fueng, S., Whitman, E., Xinjilefu, X., Atkeson, C.G.: Optimization-based full body control for the DARPA robotics challenge. J. Field Robot. 32(2), 293–312 (2015)CrossRefGoogle Scholar
  10. 10.
    Hutter, M., Gehring, C., Bloesch, M., Hoepflinger, M., Remy, C.D., Siegwart, R.: StarlETH: a compliant quadrupedal robot for fast, efficient, and versatile Locomotion. In: Proceedings of the International Conference on Climbing and Walking Robots, pp. 483–493 (2012)Google Scholar
  11. 11.
    Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evol. Comput. 15(1), 1–28 (2007)CrossRefGoogle Scholar
  12. 12.
    Kohlbrecher, S., Conner, D.C., Romay, A., Bacim, F., Bowman, D.A., von Stryk, O.: Overview of team ViGIR’s approach to the virtual robotics challenge. In: IEEE International Symposium on Safety, Security, and Rescue Robotics (2013)Google Scholar
  13. 13.
    Laue, T., Röfer, T.: Simrobot - development and applications. In: Amor, H.B., Boedecker, J., Obst, O. (eds.) The Universe of RoboCup Simulators - Implementations, Challenges and Strategies for Collaboration, Workshop Proceedings of the International Conference on Simulation, Modeling and Programming for Autonomous Robots (SIMPAR 2008), Venice, Italy (2008)Google Scholar
  14. 14.
    Nvidia Corporation, NVIDIA PhysX SDK 3.3.4 Documentation (2016). https://developer.nvidia.com/physx-sdk
  15. 15.
    Smith, R.: Open dynamics engine (2016). www.ode.org
  16. 16.
    Tanev, I., Ray, T., Buller, A.: Automated evolutionary design, robustness, and adaptation of sidewinding locomotion of a simulated snake-like robot. IEEE Trans. Robot. 21(4), 632–645 (2005)CrossRefGoogle Scholar
  17. 17.
    Zaratti, M., Fratarcangeli, M., Iocchi, L.: A 3D simulator of multiple legged robots based on USARSim. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006. LNCS (LNAI), vol. 4434, pp. 13–24. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74024-7_2 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mateusz Spis
    • 1
  • Adam Matecki
    • 1
  • Patryk Maik
    • 1
  • Adam Kurzawa
    • 1
  • Marek Kopicki
    • 2
  • Dominik Belter
    • 1
  1. 1.Institute of Control and Information EngineeringPoznan University of TechnologyPoznanPoland
  2. 2.School of Computer ScienceUniversity of BirminghamBirminghamUK

Personalised recommendations