Advertisement

Viral-Bacterial Interactions in Childhood Respiratory Tract Infections

  • Alicia AnnamalayEmail author
  • Peter Le Souëf
Chapter

Abstract

Acute respiratory infection (ARI) is an important cause of childhood morbidity and mortality worldwide. ARIs are caused primarily by viruses and bacteria that are often co-detected in respiratory specimens. Although viral-bacterial co-infections are frequently reported in children with ARI, their clinical significance and the mechanisms leading to ARI are not well understood. The respiratory tract is a reservoir of a diverse community of microorganisms, including both commensals and potential pathogens and there is growing evidence that the interactions between viruses and bacteria play a key role in the development of ARI. A better understanding of the interactions between viruses and bacteria in the respiratory tract may enhance insight into the pathogenesis of ARI, and potentially reveal new prevention and treatment strategies. This chapter summarizes the current knowledge on viruses, bacteria and viral-bacterial interactions in childhood ARI and the possible mechanisms by which these interactions may lead to disease.

Keywords

Influenza Virus Respiratory Syncytial Virus Lower Respiratory Infection Acute Respiratory Infection Respiratory Syncytial Virus Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Liu L, Oza S, Hogan D, Perin J, Rudan I, Lawn JE, et al. Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet. 2015;385(9966):430–40.PubMedCrossRefGoogle Scholar
  2. 2.
    Selwyn BJ. The epidemiology of acute respiratory tract infection in young children: comparison of findings from several developing countries. Coordinated Data Group of BOSTID Researchers. Rev Infect Dis. 1990;12(Suppl 8):870–88.CrossRefGoogle Scholar
  3. 3.
    Nair H, Nokes DJ, Gessner BD, Dherani M, Madhi SA, Singleton RJ, et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet. 2010;375(9725):1545–55.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Hayden FG. Rhinovirus and the lower respiratory tract. Rev Med Virol. 2004;14(1):17–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Bizzintino JA, Lee WM, Laing IA, Vang F, Pappas T, Zhang G, et al. Association between human rhinovirus C and severity of acute asthma in children. Eur Respir J. 2011;37(5):1037–42.PubMedCrossRefGoogle Scholar
  6. 6.
    Forgie IM, O’Neil KP, Lloyd EN, Leinonen M, Campbell H, Whittle HC, et al. Etiology of acute lower respiratory tract infections in Gambian children: I. Acute lower respiratory tract infections in infants presenting at the hospital. Pediatr Infect Dis J. 1991;10(1):33–41.PubMedCrossRefGoogle Scholar
  7. 7.
    Forgie IM, O’Neil KP, Lloyd EN, Leinonen M, Campbell H, Whittle HC, et al. Etiology of acute lower respiratory tract infections in Gambian children: II. Acute lower respiratory tract infection in children ages one to nine years presenting at the hospital. Pediatr Infect Dis J. 1991;10(1):42–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Staley JT, Konopka A. Measurement of in situ activities of nonphotosynthetic microrganisms in aquatic and terrestrial habitats. Annu Rev Microbiol. 1985;39:321–46.PubMedCrossRefGoogle Scholar
  9. 9.
    Jain S, Williams DJ, Arnold SR, Ampofo K, Bramley AM, Reed C, et al. Community-acquired pneumonia requiring hospitalization among U.S. Children. N Engl J Med. 2015;372(9):835–45.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Bosch AATM, Biesbroek G, Trzcinski K, Sanders EAM, Bogaert D. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog. 2013;9(1):e1003057.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Glezen WP, Denny FW. Epidemiology of acute lower respiratory disease in children. N Engl J Med. 1973;288(10):498–505.PubMedCrossRefGoogle Scholar
  12. 12.
    Fahey T, Stocks N, Thomas T. Systematic review of the treatment of upper respiratory tract infection. Arch Dis Child. 1998;79(3):225–30.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Shi T, McLean K, Campbell H, Nair H. Aetiological role of common respiratory viruses in acute lower respiratory infections in children under five years: a systematic review and meta–analysis. J Glob Health. 2015;5(1):010408.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Weber MW, Mulholland EK, Greenwood BM. Respiratory syncytial virus infection in tropical and developing countries. Trop Med Int Health. 1998;3(4):268–80.PubMedCrossRefGoogle Scholar
  15. 15.
    Simoes EAF. Respiratory syncytial virus infection. Lancet. 1999;354(9181):847.PubMedCrossRefGoogle Scholar
  16. 16.
    Jafri H, Wu X, Makari D, Henrickson KJ. Distribution of respiratory syncytial virus subtypes A and B among infants presenting to the emergency department with lower respiratory tract infection or apnea. Pediatr Infect Dis J. 2013;32(4):335–40.PubMedCrossRefGoogle Scholar
  17. 17.
    Martinello RA, Chen MD, Weibel C, Kahn JS. Correlation between respiratory syncytial virus genotype and severity of illness. J Infect Dis. 2002;186(6):839–42.PubMedCrossRefGoogle Scholar
  18. 18.
    Walsh EE, McConnochie KM, Long CE, Hall CB. Severity of respiratory syncytial virus infection is related to virus strain. J Infect Dis. 1997;175(4):814–20.PubMedCrossRefGoogle Scholar
  19. 19.
    Douglas RG. Pathogenesis of rhinovirus common colds in human volunteers. Ann Otolaryngol. 1970;79:563–71.Google Scholar
  20. 20.
    Bardin PG, Johnston SL, Pattemore PK. Viruses as precipitants of asthma symptoms II. Physiology and mechanisms. Clin Exp Allergy. 1992;22(9):809–22.PubMedCrossRefGoogle Scholar
  21. 21.
    Corne JM, Holgate ST. Mechanisms of virus induced exacerbations of asthma. Thorax. 1997;52:380–9.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Papadopoulos NG, Sanderson G, Hunter J, Johnston SL. Rhinoviruses replicate effectively at lower airway temperatures. J Med Virol. 1999;58(1):100–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Chidlow GR, Laing IA, Harnett GB, Greenhill AR, Phuanukoonnon S, Siba PM, et al. Respiratory viral pathogens associated with lower respiratory tract disease among young children in the highlands of Papua New Guinea. J Clin Virol. 2012;54(3):235–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Price WH. The isolation of a new virus associated with respiratory clinical disease in humans. Proc Natl Acad Sci U S A. 1956;42:892–6.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Lamson D, Renwick N, Kapoor V, Liu Z, Palacios G, Ju J, et al. MassTag polymerase-chain-reaction detection of respiratory pathogens, including a new rhinovirus genotype, that caused influenza- like illness in New York State during 2004-2005. J Infect Dis. 2006;194:1398–402.PubMedCrossRefGoogle Scholar
  26. 26.
    Arden KE, McErlean P, Nissen MD, Sloots TP, Mackay IM. Frequent detection of human rhinoviruses, paramyxoviruses, coronaviruses, and bocavirus during acute respiratory tract infections. J Med Virol. 2006;78(9):1232–40.PubMedCrossRefGoogle Scholar
  27. 27.
    Lau SKP, Yip CCY, Lin AWC, Lee RA, So LY, Lau YL, et al. Cinical and molecular epidemiology of human rhinovirus C in children and adults in Hong Kong reveals a possible distinct human rhinovirus C subgroup. J Infect Dis. 2009;200(1):1096–103.PubMedCrossRefGoogle Scholar
  28. 28.
    Renwick N, Schweiger B, Kapoor V, Liu Z, Villari J, Bullmann R, et al. A recently identified rhinovirus genotype is associated with severe respiratory-tract infection in children in Germany. J Infect Dis. 2007;196:1745–60.CrossRefGoogle Scholar
  29. 29.
    Miller EK, Edwards KM, Weinberg GA, Iwane MK, Griffin MR, Hall CB, et al. A novel group of rhinoviruses is associated with asthma hospitalizations. J Allergy Clin Immunol. 2009;123:98–104.PubMedCrossRefGoogle Scholar
  30. 30.
    Miller EK, Khuri-Bulos N, Williams JV, Shehabi AA, Faouri S, Al Jundi I, et al. Human rhinovirus C associated with wheezing in hospitalised children in the Middle East. J Clin Microbiol. 2009;46(1):85–9.Google Scholar
  31. 31.
    Linsuwanon P, Payungporn S, Samransamruajkit R, Posuwan N, Makkoch J, Theanboonlers A, et al. High prevalence of human rhinovirus C infection in Thai children with acute lower respiratory tract disease. J Infect. 2009;59(2):115–21.PubMedCrossRefGoogle Scholar
  32. 32.
    Calvo C, García-García ML, Sanchez-Dehesa R, Román C, Tabares A, Pozo F, et al. Eight year prospective study of adenoviruses infections in hospitalized children. Comparison with other respiratory viruses. PLoS One. 2015;10(7):e0132162.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kunz AN, Ottolini M. The role of adenovirus in respiratory tract infections. Curr Infect Dis Rep. 2010;12(2):81–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Iskander M, Robert B, Lambert S. The burden of influenza in children. Curr Opin Infect Dis. 2007;20(3):259–63.PubMedCrossRefGoogle Scholar
  35. 35.
    Thompson WW, Shay DK, Weintraub E, et al. Influenza-associated hospitalizations in the United States. JAMA. 2004;292(11):1333–40.PubMedCrossRefGoogle Scholar
  36. 36.
    Nair H, Brooks WA, Katz M, Roca A, Berkley JA, Madhi SA, et al. Global burden of respiratory infections due to seasonal influenza in young children: a systematic review and meta-analysis. Lancet. 2011;378(9807):1917–30.PubMedCrossRefGoogle Scholar
  37. 37.
    Lafond KE, Nair H, Rasooly MH, Valente F, Booy R, Rahman M, et al. Global role and burden of influenza in pediatric respiratory hospitalizations, 1982–2012: a systematic analysis. PLoS Med. 2016;13(3):e1001977.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Counihan M, Shay DK, Holman RC, Lowther SA, Anderson LJ. Human parainfluenza virus-associated hospitalizations among children less than five years of age in the United States. Pediatr Infect Dis J. 2001;20(7):646–53.PubMedCrossRefGoogle Scholar
  39. 39.
    Reed G, Jewett PH, Thompson J, Tollefson S, Wright PF. Epidemiology and clinical impact of parainfluenza virus infections in otherwise healthy infants and young children <5 years old. J Infect Dis. 1997;175(4):807–13.PubMedCrossRefGoogle Scholar
  40. 40.
    Iwane MK, Edwards KM, Szilagyi PG, Walker FJ, Griffin MR, Weinberg GA, et al. Population-based surveillance for hospitalizations associated with respiratory syncytial virus, influenza virus, and parainfluenza viruses among young children. Pediatrics. 2004;113(6):1758–64.PubMedCrossRefGoogle Scholar
  41. 41.
    Henrickson KJ. Parainfluenza viruses. Clin Microbiol Rev. 2003;16(2):242–64.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Gardner SD. The isolation of parainfluenza 4 subtypes A and B in England and serological studies of their prevalence. J Hyg. 1969;67(3):545–50.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    van den Hoogen BG, de Jong JC, Kuiken T, Groot R, Fouchier RAM, Osterhaus ADME. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med. 2001;7:719–24.PubMedCrossRefGoogle Scholar
  44. 44.
    de Graaf M, Osterhaus ADME, Fouchier RAM, Holmes EC. Evolutionary dynamics of human and avian metapneumoviruses. J Gen Virol. 2008;89(12):2933–42.PubMedCrossRefGoogle Scholar
  45. 45.
    Beneri C, Ginocchio CC, Manji R, Sood S. Comparison of clinical features of pediatric respiratory syncytial virus and human metapneumovirus infections. Infect Control Hosp Epidemiol. 2015;30(12):1240–1.CrossRefGoogle Scholar
  46. 46.
    Edwards KM, Zhu Y, Griffin MR, Weinberg GA, Hall CB, Szilagyi PG, et al. Burden of human metapneumovirus infection in young children. N Engl J Med. 2013;368(7):633–43.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Madhi SA, Ludewick H, Kuwanda L, van Niekerk N, Cutland C, Klugman KP. Seasonality, incidence, and repeat human metapneumovirus lower respiratory tract infections in an area with a high orevalence of human immunodeficiency virus type-1 infection. Pediatr Infect Dis J. 2007;26(8):693–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Boivin G, De Serres G, Côté S, Gilca R, Abed Y, Rochette L, et al. Human metapneumovirus infections in hospitalized children. Emerg Infect Dis. 2003;9(6):634–40.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Dollner H, Risnes K, Radtke A, Nordbo SA. Outbreak of human metapneumovirus infection in Norwegian children. Pediatr Infect Dis J. 2004;25(5):436–40.CrossRefGoogle Scholar
  50. 50.
    Esper F, Martinello RA, Boucher D, Weibel C, Ferguson D, Landry ML, et al. A 1-year experience with human metapneumovirus in children aged <5 years. J Infect Dis. 2004;189(8):1388–96.PubMedCrossRefGoogle Scholar
  51. 51.
    Greenberg SB. Update on human rhinovirus and coronavirus infections. Semin Respir Crit Care Med. 2016;37(04):555–71.PubMedCrossRefGoogle Scholar
  52. 52.
    Allander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung-Lindell A, Andersson B. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci U S A. 2005;102(36):12891–6.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Arthur JL, Higgins GD, Davidson GP, Givney RC, Ratcliff RM. A novel bocavirus associated with acute gastroenteritis in Australian children. PLoS Pathog. 2009;5(4):e1000391.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Kapoor A, Slikas E, Simmonds P, Chieochansin T, Naeem A, Shaukat S, et al. A new bocavirus species in human stool. J Infect Dis. 2009;199(2):196–200.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kapoor A, Simmonds P, Slikas E, Li L, Bodhidatta L, Sethabutr O, et al. Human bocaviruses are highly diverse, dispersed, recombination prone, and prevalent in enteric infections. J Infect Dis. 2010;201(11):1633–43.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Allander T. Human bocavirus. J Clin Virol. 2008;41(1):29–33.PubMedCrossRefGoogle Scholar
  57. 57.
    Berry M, Gamieldien J, Fielding B. Identification of new respiratory viruses in the new millennium. Viruses. 2015;7(3):996.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Gharabaghi F, Hawan A, Drews SJ, Richardson SE. Evaluation of multiple commercial molecular and conventional diagnostic assays for the detection of respiratory viruses in children. Clin Microbiol Infect. 2011;17(12):1900–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Calvo C, García-García ML, Blanco C, Vázquez MC, Frías ME, Pérez-Breña P, et al. Multiple simultaneous viral infections in infants with acute respiratory tract infections in Spain. J Clin Virol. 2008;42(3):268–72.PubMedCrossRefGoogle Scholar
  60. 60.
    Franz A, Adams O, Willems R, Bonzel L, Neuhausen N, Schweizer-Krantz S, et al. Correlation of viral load of respiratory pathogens and co-infections with disease severity in children hospitalized for lower respiratory tract infection. J Clin Virol. 2010;48(4):239–45.PubMedCrossRefGoogle Scholar
  61. 61.
    Nascimento MS, de Souza Ferreira AV, Rodrigues JC, Abramovici S, de LVF SF. High rate of viral identification and coinfections in infants with acute bronchiolitis. Clinics. 2010;65:1133–7.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Richard N, Komurian-Pradel F, Javouhey E, Perret M, Rajoharison A, Bagnaud A, et al. The impact of dual viral infection in infants admitted to pediatric intensive care unit associated with severe bronchiolitis. Pediatr Infect Dis J. 2007;27(3):213–7.CrossRefGoogle Scholar
  63. 63.
    Cilla G, Onate E, Perez-Yarza E, Montes M, Vicente D, Perez-Trallero E. Viruses in community-acquired pneumonia in children aged less than 3 years old: high rate of viral coinfection. J Med Virol. 2008;80:1843–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Arruda E, Jones M, Escremim de Paula F, Chong D, Bugarin G, Notario G, et al. The burden of single virus and viral coinfections on severe lower respiratory tract infections among preterm infants: a prospective birth cohort study in Brazil. Pediatr Infect Dis J. 2014;33(10):998–1003.CrossRefGoogle Scholar
  65. 65.
    Rhedin S, Lindstrand A, Rotzén-Östlund M, Tolfvenstam T, Öhrmalm L, Rinder MR, et al. Clinical utility of PCR for common viruses in acute respiratory illness. Pediatrics. 2014;133(3):e538–e45.PubMedCrossRefGoogle Scholar
  66. 66.
    Scotta MC, Chakr VCBG, de Moura A, Becker RG, de Souza APD, Jones MH, et al. Respiratory viral coinfection and disease severity in children: A systematic review and meta-analysis. J Clin Virol. 2016;80:45–56.PubMedCrossRefGoogle Scholar
  67. 67.
    Lim FJ, de Klerk N, Blyth CC, Fathima P, Moore HC. Systematic review and meta-analysis of respiratory viral coinfections in children. Respirology. 2016;21(4):648–55.PubMedCrossRefGoogle Scholar
  68. 68.
    Goka EA, Vallely PJ, Mutton KJ, Klapper PE. Single and multiple respiratory virus infections and severity of respiratory disease: a systematic review. Paediatr Respir Rev. 2014;15(4):363–70.PubMedGoogle Scholar
  69. 69.
    Asner SA, Science ME, Tran D, Smieja M, Merglen A, Mertz D. Clinical disease severity of respiratory viral co-infection versus single viral infection: a systematic review and meta-analysis. PLoS One. 2014;9(6):e99392.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Shinjoh M, Omoe K, Saito N, Matsuo N, Nerome K. In vitro growth profiles of respiratory syncytial virus in the presence of influenza virus. Acta Virol. 2000;44(2):91–7.PubMedGoogle Scholar
  71. 71.
    Pinky L, Dobrovolny HM. Coinfections of the respiratory tract: viral competition for resources. PLoS One. 2016;11(5):e0155589.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Canducci F, Debiaggi M, Sampaolo M, Marinozzi MC, Berrè S, Terulla C, et al. Two-year prospective study of single infections and co-infections by respiratory syncytial virus and viruses identified recently in infants with acute respiratory disease. J Med Virol. 2008;80(4):716–23.PubMedCrossRefGoogle Scholar
  73. 73.
    Marguet C, Lubrano M, Gueudin M, Le Roux P, Deschildre A, Forget C, et al. In very young infants severity of acute bronchiolitis depends on carried viruses. PLoS One. 2009;4(2):e4596.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164):804–10.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, et al. Disordered microbial communities in asthmatic airways. PLoS One. 2010;5(1):e8578.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Lederberg J, McCray A. ‘Ome sweet’ omics-a genealogical treasury of words. Scientist. 2001;15:8–10.Google Scholar
  77. 77.
    Blaser MJ, Falkow S. What are the consequences of the disappearing human microbiota? Nat Rev Microbiol. 2009;7(12):887–94.PubMedCrossRefGoogle Scholar
  78. 78.
    Garcia-Rodriguez J, Fresnadillo Martinez M. Dynamics of nasopharyngeal colonization by potential respiratory pathogens. J Antimicrob Chemother. 2002;50(Suppl S2):59–73.PubMedCrossRefGoogle Scholar
  79. 79.
    Murphy T, Bakaletz L, Smeesters P. Microbial interactions in the respiratory tract. Pediatr Infect Dis J. 2009;28(10):121–6.CrossRefGoogle Scholar
  80. 80.
    Ryan KJ, Ray CG, editors. Sherris medical microbiology. New York: McGraw Hill; 2004.Google Scholar
  81. 81.
    Bridy-Pappas AE, Margolis MB, Center KJ, Isaacman DJ. Streptococcus pneumoniae: description of the pathogen, disease epidemiology, treatment, and prevention. Pharmacotherapy. 2005;25(9):1193–212.PubMedCrossRefGoogle Scholar
  82. 82.
    Torres A, Blasi F, Peetermans WE, Viegi G, Welte T. The aetiology and antibiotic management of community-acquired pneumonia in adults in Europe: a literature review. Eur J Clin Microbiol Infect Dis. 2014;33(7):1065–79.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Kalin M. Pneumococcal serotypes and their clinical relevance. Thorax. 1998;53(3):159–62.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Kuhnert P, Christensen H, editors. Pasteurellaceae: biology, genomics and molecular aspects. Poole: Caister Academic Press; 2008.Google Scholar
  85. 85.
    Taubenberger JK, Hultin JV, Morens DM. Discovery and characterization of the 1918 pandemic influenza virus in historical context. Antiviral Ther. 2007;12(4 Pt B):581–91.Google Scholar
  86. 86.
    Gilsdorf JR. What the pediatrician should know about non-typeable Haemophilus influenzae. J Infect. 2015;71(Suppl 1):S10–S4.PubMedCrossRefGoogle Scholar
  87. 87.
    Murphy TF. Branhamella catarrhalis: epidemiology, surface antigenic structure, and immune response. Microbiol Rev. 1996;60(2):267–79.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Goldstein EJC, Murphy TF, Parameswaran GI. Moraxella catarrhalis, a human respiratory tract pathogen. Clin Infect Dis. 2009;49(1):124–31.CrossRefGoogle Scholar
  89. 89.
    Aniansson G, Aim B, Andersson B, Larsson P, Nylen O, Peterson H, et al. Nasopharyngeal colonization during the first year of life. J Infect Dis. 1992;165(Suppl 1):S38–42.PubMedCrossRefGoogle Scholar
  90. 90.
    Faden H, Harabuchi Y, Hong JJ. Epidemiology of Moraxella catarrhalis in children during the first 2 years of life: relationship to otitis media. J Infect Dis. 1994;169(6):1312–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Leach AJ, Boswell JB, Asche V, Nienhuys TG, Mathews JD. Bacterial colonization of the nasopharynx predicts very early onset and persistence of otitis media in Australian aboriginal infants. Pediatr Infect Dis J. 1994;13(11):983–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Wertheim HFL, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis. 2005;5(12):751–62.PubMedCrossRefGoogle Scholar
  93. 93.
    Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603–61.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Margolis E, Yates A, Levin BR. The ecology of nasal colonization of Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus: the role of competition and interactions with host’s immune response. BMC Microbiol. 2010;10(1):59.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Lysenko ES, Ratner AJ, Nelson AL, Weiser JN. The role of innate immune responses in the outcome of interspecies competition for colonization of mucosal surfaces. PLoS Pathog. 2005;1:e1.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Lysenko ES, Lijek RS, Brown SP, Weiser JN. Within-host competition drives selection for the capsule virulence determinant of Streptococcus pneumoniae. Curr Biol. 2010;20(13):1222–6.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Madhi SA, Adrian P, Kuwanda L, Cutland C, Albrich WC, Klugman KP. Long-term effect of pneumococcal conjugate vaccine on nasopharyngeal colonization by Streptococcus pneumoniae-and associated interactions with Staphylococcus aureus and Haemophilus influenzae colonization-in HIV-Infected and HIV-uninfected children. J Infect Dis. 2007;196:1662–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Jacoby P, Watson K, Bowman J, Taylor A, Riley TV, Smith DW, et al. Modelling the co-occurrence of Streptococcus pneumoniae with other bacterial and viral pathogens in the upper respiratory tract. Vaccine. 2007;25(13):2458–64.PubMedCrossRefGoogle Scholar
  99. 99.
    Pettigrew MM, Gent JF, Revai K, Patel JA, Chonmaitree T. Microbial interactions during upper respiratory tract infections. Emerg Infect Dis. 2008;14(10):1584–91.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Brealey JC, Sly PD, Young PR, Chappell KJ. Viral bacterial co-infection of the respiratory tract during early childhood. FEMS Microbiol Lett. 2015;362(10). pii: fnv062.Google Scholar
  101. 101.
    O’Brien KL, Walters MI, Sellman J, Quinlisk P, Regnery H, Schwartz B, et al. Severe Pneumococcal pneumonia in previously healthy children: the role of preceding influenza infection. Clin Infect Dis. 2000;30(5):784–9.PubMedCrossRefGoogle Scholar
  102. 102.
    Palacios G, Hornig M, Cisterna D, Savji N, Bussetti A, Kapoor V, et al. Streptococcus pneumoniae coinfection is correlated with the severity of H1N1 pandemic influenza. PLoS One. 2009;4(12):e8540.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Martén-Loeches I, Sanchez-Corral A, Diaz E, Granada RM, Zaragoza R, Villavicencio C, et al. Community-acquired respiratory coinfection in critically ill patients with pandemic 2009 influenza A(H1N1) virus. Chest. 2011;139(3):555–62.CrossRefGoogle Scholar
  104. 104.
    Duttweiler L, Nadal D, Frey B. Pulmonary and systemic bacterial co-infections in severe RSV bronchiolitis. Arch Dis Child. 2004;89(12):1155–7.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Kneyber MCJ, van Oud-Alblas HB, van Vliet M, Uiterwaal CSPM, Kimpen JLL, van Vught AJ. Concurrent bacterial infection and prolonged mechanical ventilation in infants with respiratory syncytial virus lower respiratory tract disease. Intensive Care Med. 2005;31(5):680–5.PubMedCrossRefGoogle Scholar
  106. 106.
    Randolph AG, Reder L, Englund JA. Risk of bacterial infection in previously healthy respiratory syncytial virus-infected young children admitted to the intensive care unit. Pediatr Infect Dis J. 2004;23(11):990–4.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Thorburn K, Harigopal S, Reddy V, Taylor N, van Saene HKF. High incidence of pulmonary bacterial co-infection in children with severe respiratory syncytial virus (RSV) bronchiolitis. Thorax. 2006;61(7):611–5.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Resch B, Gusenleitner W, Mueller WD. Risk of concurrent bacterial infection in preterm infants hospitalized due to respiratory syncytial virus infection. Acta Paediatr. 2007;96(4):495–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Heiskanen-Kosma T, Korppi M, Jokinen C, Kurki S, Heiskanen L, Juvonen H, et al. Etiology of childhood pneumonia: serologic results of a prospective, population-based study. Pediatr Infect Dis J. 1998;17(11):986–91.PubMedCrossRefGoogle Scholar
  110. 110.
    Kim PE, Musher DM, Glezen WP, Barradas MCR, Nahm WK, Wright CE. Association of invasive pneumococcal disease with season, atmospheric conditions, air pollution, and the isolation of respiratory viruses. Clin Infect Dis. 1996;22(1):100–6.PubMedCrossRefGoogle Scholar
  111. 111.
    Weinberger DM, Givon-Lavi N, Shemer-Avni Y, Bar-Ziv J, Alonso WJ, Greenberg D, et al. Influence of pneumococcal vaccines and respiratory syncytial virus on alveolar pneumonia. Israel Emerg Infect Dis. 2013;19(7):1084–91.PubMedCrossRefGoogle Scholar
  112. 112.
    Bénet T, Sylla M, Messaoudi M, Sánchez Picot V, Telles J-N, Diakite A-A, et al. Etiology and factors associated with pneumonia in children under 5 years of age in Mali: a prospective case-control study. PLoS One. 2015;10(12):e0145447.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Purcell K, Fergie J. Concurrent serious bacterial infections in 2396 infants and children hospitalized with respiratory syncytial virus lower respiratory tract infections. JAMA Pediatr. 2002;156(4):322–4.Google Scholar
  114. 114.
    Titus MO, Wright SW. Prevalence of serious bacterial infections in febrile infants with respiratory syncytial virus infection. Pediatrics. 2003;112(2):282–4.PubMedCrossRefGoogle Scholar
  115. 115.
    Bloomfield P, Dalton D, Karleka A, Kesson A, Duncan G, Isaacs D. Bacteraemia and antibiotic use in respiratory syncytial virus infections. Arch Dis Child. 2004;89(4):363–7.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Hall CB, Powell KR, Schnabel KC, Gala CL, Pincus PH. Risk of secondary bacterial infection in infants hospitalized with respiratory syncytial viral infection. J Pediatr. 1988;113(2):266–71.PubMedCrossRefGoogle Scholar
  117. 117.
    Techasaensiri B, Techasaensiri C, Mejias A, McCracken GH, Ramilo O. Viral coinfections in children with invasive pneumococcal disease. Pediatr Infect Dis J. 2010;29:519–23.PubMedGoogle Scholar
  118. 118.
    Honkinen M, Lahti E, Österback R, Ruuskanen O, Waris M. Viruses and bacteria in sputum samples of children with community-acquired pneumonia. Clin Microbiol Infect. 2012;18(3):300–7.PubMedCrossRefGoogle Scholar
  119. 119.
    Lauinger IL, Bible JM, Halligan EP, Bangalore H, Tosas O, Aarons EJ, et al. Patient characteristics and severity of human rhinovirus infections in children. J Clin Virol. 2013;58(1):216–20.PubMedCrossRefGoogle Scholar
  120. 120.
    Madhi SA, Ludewick H, Kuwanda L, Niekerk NV, Cutland C, Little T, et al. Pneumococcal coinfection with human metapneumovirus. J Infect Dis. 2006;193(9):1236–43.PubMedCrossRefGoogle Scholar
  121. 121.
    Proud D, Leigh R. Epithelial cells and airway diseases. Immunol Rev. 2011;242(1):186–204.PubMedCrossRefGoogle Scholar
  122. 122.
    Vareille M, Kieninger E, Edwards MR, Regamey N. The airway epithelium: soldier in the fight against respiratory viruses. Clin Microbiol Rev. 2011;24(1):210–29.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Melvin JA, Bomberger JM. Compromised defenses: exploitation of epithelial responses during viral-bacterial co-infection of the respiratory Tract. PLoS Pathog. 2016;12(9):e1005797.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Smith CM, Sandrini S, Datta S, Freestone P, Shafeeq S, Radhakrishnan P, et al. Respiratory syncytial virus increases the virulence of Streptococcus pneumoniae by binding to penicillin binding protein 1a. A new paradigm in respiratory infection. Am J Respir Crit Care. 2014;190:196–207.CrossRefGoogle Scholar
  125. 125.
    Pittet LA, Hall-Stoodley L, Rutkowski MR, Harmsen AG. Influenza virus infection decreases tracheal mucociliary velocity and clearance of Streptococcus pneumoniae. Am J Respir Cell Mol Biol. 2010;42(4):450–60.PubMedCrossRefGoogle Scholar
  126. 126.
    Suzuki K, Bakaletz LO. Synergistic effect of adenovirus type 1 and nontypeable Haemophilus influenzae in a chinchilla model of experimental otitis media. Infect Immunol. 1994;62(5):1710–8.Google Scholar
  127. 127.
    Sajjan U, Wang Q, Zhao Y, Gruenert DC, Hershenson MB. Rhinovirus disrupts the barrier function of polarized airway epithelial cells. Am J Respir Crit Care. 2008;178(12):1271–81.CrossRefGoogle Scholar
  128. 128.
    Ghoneim HE, Thomas PG, McCullers JA. Depletion of alveolar macrophages during influenza infection facilitates bacterial superinfections. J Immunol. 2013;191(3):1250–9.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Nakamura S, Davis KM, Weiser JN. Synergistic stimulation of type I interferons during influenza virus coinfection promotes Streptococcus pneumoniae colonization in mice. J Clin Invest. 2011;121(9):3657–65.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Jamieson AM, Yu S, Annicelli CH, Medzhitov R. Influenza virus-induced glucocorticoids compromise innate host defense against a secondary bacterial infection. Cell Host Microbe. 2010;7(2):103–14.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Hament JM, Aerts PC, Fleer A, Dijk H, Harmsen T, Kimpen JL, et al. Enhanced adherence of Streptococcus pneumoniae to human epithelial cells infected with respiratory syncytial virus. Pediatr Res. 2004;55:972–8.PubMedCrossRefGoogle Scholar
  132. 132.
    Hament JM, Aerts PC, Fleer A, van Dijk H, Harmsen T, Kimpen JL, et al. Direct binding of respiratory syncytial virus to pneumococci: a phenomenon that enhances both pneumococcal adherence to human epithelial cells and pneumococcal invasiveness in a murine model. Pediatr Res. 2005;58:1198–203.PubMedCrossRefGoogle Scholar
  133. 133.
    Avadhanula V, Rodriguez CA, Devincenzo JP, Wang Y, Webby RJ, Ulett GC, et al. Respiratory viruses augment the adhesion of bacterial pathogens to respiratory epithelium in a viral species- and cell type-dependent manner. J Virol. 2006;80:1629–36.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Avadhanula V, Wang Y, Portner A, Adderson E. Nontypeable Haemophilus influenzae and Streptococcus pneumoniae bind respiratory syncytial virus glycoprotein. J Med Microbiol. 2007;56(9):1133–7.PubMedCrossRefGoogle Scholar
  135. 135.
    Cundell DR, Gerard NP, Gerard C, Idanpaan-Heikkila I, Tuomanen EI. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature. 1995;377(6548):435–8.PubMedCrossRefGoogle Scholar
  136. 136.
    Kimaro Mlacha SZ, Peret TCT, Kumar N, Romero-Steiner S, Dunning Hotopp JC, Ishmael N, et al. Transcriptional adaptation of pneumococci and human pharyngeal cells in the presence of a virus infection. BMC Genomics. 2013;14(1):378.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    McCullers JA, Bartmess KC. Role of neuraminidase in lethal synergism between influenza virus and Streptococcus pneumoniae. J Infect Dis. 2003;187(6):1000–9.PubMedCrossRefGoogle Scholar
  138. 138.
    Huber VC, Peltola V, Iverson AR, McCullers JA. Contribution of vaccine-induced immunity toward either the HA or the NA component of influenza viruses limits secondary bacterial complications. J Virol. 2010;84(8):4105–8.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Plotkowski MC, Puchelle E, Beck G, Jacquot J, Hannoun C. Adherence of type I Streptococcus pneumoniae to tracheal epithelium of mice infected with influenza A/PR8 virus. Am Rev Respir Dis. 1986;134:1040–9.PubMedCrossRefGoogle Scholar
  140. 140.
    Wang JH, Kwon HJ, Jang YJ. Rhinovirus enhances various bacterial adhesions to nasal epithelial cells simultaneously. Laryngoscope. 2009;119:1406–11.PubMedCrossRefGoogle Scholar
  141. 141.
    Ishizuka S, Yamaya M, Suzuki T, Takahashi H, Ida S, Sasaki T, et al. Effects of rhinovirus infection on the adherence of Streptococcus pneumoniae to cultured human airway epithelial cells. J Infect Dis. 2003;188(12):1928–39.PubMedCrossRefGoogle Scholar
  142. 142.
    Regev-Yochay G, Raz M, Dagan R, Porat N, Shainberg B, Pinco E, et al. Nasopharyngeal carriage of Streptococcus pneumoniae by adults and children in community and family settings. Clin Infect Dis. 2004;38(5):632–9.PubMedCrossRefGoogle Scholar
  143. 143.
    Adegbola RA, DeAntonio R, Hill PC, Roca A, Usuf E, Hoet B, et al. Carriage of Streptococcus pneumoniae and other respiratory bacterial pathogens in low and lower-middle income countries: a systematic review and meta-analysis. PLoS One. 2014;9(8):e103293.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Madhi SA, Klugman KP. A role for Streptococcus pneumoniae in virus-associated pneumonia. Nat Med. 2004;10:811–3.PubMedCrossRefGoogle Scholar
  145. 145.
    Verkaik NJ, Nguyen DT, de Vogel CP, Moll HA, Verbrugh HA, Jaddoe VWV, et al. Streptococcus pneumoniae exposure is associated with human metapneumovirus seroconversion and increased susceptibility to in vitro HMPV infection. Clin Microbiol Infect. 2011;17(12):1840–4.PubMedCrossRefGoogle Scholar
  146. 146.
    Smith AM, Adler FR, Ribeiro RM, Gutenkunst RN, McAuley JL, McCullers JA, et al. Kinetics of coinfection with influenza A virus and Streptococcus pneumoniae. PLoS Pathog. 2013;9(3):e1003238.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    McCullers JA, Rehg JE. Lethal synergism between influenza virus and Streptococcus pneumoniae: characterization of a mouse model and the role of platelet-activating factor receptor. J Infect Dis. 2002;186(3):341–50.PubMedCrossRefGoogle Scholar
  148. 148.
    Nguyen DT, de Witte L, Ludlow M, Yüksel S, Wiesmüller K-H, Geijtenbeek TBH, et al. The synthetic bacterial lipopeptide Pam3CSK4 modulates respiratory syncytial virus infection independent of TLR activation. PLoS Pathog. 2010;6(8):e1001049.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Sajjan US, Jia Y, Newcomb DC, Bentley JK, Lukacs NW, LiPuma JJ, et al. H. influenzae potentiates airway epithelial cell responses to rhinovirus by increasing ICAM-1 and TLR3 expression. FASEB J. 2006;20:2121–3.PubMedCrossRefGoogle Scholar
  150. 150.
    Kane M, Case LK, Kopaskie K, Kozlova A, MacDearmid C, Chervonsky AV, et al. Successful transmission of a retrovirus depends on the commensal microbiota. Science. 2011;334(6053):245–9.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Paediatrics and Child HealthUniversity of Western AustraliaPerthAustralia

Personalised recommendations