Skip to main content

Application of Electrical Modalities on Muscle Stimulation

  • Chapter
  • First Online:
Non-Pharmacological Management of Osteoporosis

Abstract

Physical activity and especially physical exercise are considered as cornerstones of musculoskeletal health [1, 2]. Recent studies [3, 4], however, indicate that a training frequency of at least 2 h/week/year must be generated and maintained in order to achieve relevant positive results for maintaining or increasing muscle or bone mass in older adults. This need for high training frequency, however, collides with the (low) sports participation rates of older adults [5]. Although the sports participation level has slightly increased [6] for the elderly population, surveys demonstrated that less than a quarter of women 70 years and older, which may be the most prominent risk group for sarcopenia and osteoporosis, regularly “exercise” [5]. Moreover, in a lifelong “sport-abstinent” cohort of subjects, the willingness and insight to start regular and intense exercise programs are rather limited. However, from a socioeconomic point of view, it is important that “exercise programs” dedicated to this target group be developed. “Alternative” training technologies, such as whole-body vibration (WBV) or even more promisingly whole-body electromyostimulation (WB-EMS), which are able to amplify light exercise stimuli to an effective degree [7], may be a time-effective, customizable, and joint-friendly option, especially for older, less sport-affine, and/or vulnerable subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1 Hz vs. 20 Hz vs. 50 Hz vs. 100 Hz vs. disuse control (“hindlimb suspension”) vs. aged matched control.

  2. 2.

    The effect of 100 Hz was also significant but slightly lower…

  3. 3.

    That is, one instructor supervised two to three participants.

  4. 4.

    …which is however the majority of the older population [6].

References

  1. Börjesson M, Hellenius ML, Jansson E, et al. Physical activity in the prevention and treatment of disease. Stockholm: Professional Association for Physical Activity; 2010.

    Google Scholar 

  2. Vuori I. Exercise and physical health: musculoskeletal health and functional capacities. Res Q Exerc Sport. 1995;66:276–85.

    Article  CAS  PubMed  Google Scholar 

  3. Kemmler W, Bebenek M, von Stengel S. Dosis Wirkungsbeziehung eines körperlichen trainings zur Prophylaxe und Therapie der Osteoporose bei postmenopausalen frauen mit Osteopenie. Osteologie. 2013;22:32–8.

    Google Scholar 

  4. Kemmler W, von Stengel S. Exercise frequency, health risk factors, and diseases of the elderly. Arch Phys Med Rehabil. 2013;94:2046–53.

    Article  PubMed  Google Scholar 

  5. Rütten A, Abu-Omar K, Lampert T, et al. Körperliche Aktivität. Report. Berlin: Statistisches Bundesamt; 2005.

    Google Scholar 

  6. Robert-Koch-Institut. Sportliche Aktivität. Wie aktiv sind die Deutschen. Berlin: RKI; 2012.

    Google Scholar 

  7. Kemmler W, Von Stengel S, Schwarz J, et al. Effect of whole-body electromyostimulation on energy expenditure during exercise. J Strength Cond Res. 2012;26:240–5.

    Article  PubMed  Google Scholar 

  8. Kemmler W, Schliffka R, Mayhew JL, et al. Effects of whole-body-electromyostimulation on resting metabolic rate, anthropometric and neuromuscular parameters in the elderly. The training and ElectroStimulation trial (TEST). J Strength Cond Res. 2010;24:1880–6.

    Article  PubMed  Google Scholar 

  9. Kemmler W, Birlauf A, von Stengel S. Einfluss von Ganzkörper-Elektromyostimulation auf das Metabolische Syndrom bei älteren Männern mit metabolischem Syndrom. Dtsch Z Sportmed. 2010;61:117–23.

    Google Scholar 

  10. Kemmler W, von Stengel S. Whole-body electromyostimulation as a means to impact muscle mass and abdominal body fat in lean, sedentary, older female adults: subanalysis of the TEST-III trial. Clin Interv Aging. 2013;8:1353–64.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kemmler W, Von Stengel S, Bebenek M. Effekte eines Ganzkörper-Elektromyostimulations-trainings auf die Knochendichte eines Hochrisikokollektivs für Osteopenie. Eine randomisierte Studie mit schlanken und sportlich inaktiven frauen. Osteologie. 2013;22:121–8.

    Google Scholar 

  12. Filipovic A, Kleinoder H, Dormann U, et al. Electromyostimulation—a systematic review of the influence of training regimens and stimulation parameters on effectiveness in electromyostimulation training of selected strength parameters. J Strength Cond Res. 2011;25:3218–38.

    Article  PubMed  Google Scholar 

  13. Lam H, Qin YX. The effects of frequency-dependent dynamic muscle stimulation on inhibition of trabecular bone loss in a disuse model. Bone. 2008;43:1093–100.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vatter J, Authenrieth S, Müller S. Betreuungshandbuch EMS. Health and Beauty. Karlsruhe, 2014.

    Google Scholar 

  15. Borg E, Kaijser L. A comparison between three rating scales for perceived exertion and two different work tests. Scand J Med Sci Sports. 2006;16:57–69.

    Article  CAS  PubMed  Google Scholar 

  16. Cohen J. Statistical power analysis for the behavioral sciences. Hillsdale: Lawrence Earlbaum Associate; 1988.

    Google Scholar 

  17. Kemmler W, von Stengel S, Bebenek M, et al. Exercise and fractures in postmenopausal women: 12-year results of the Erlangen fitness and osteoporosis prevention study (EFOPS). Osteoporos Int. 2012;23:1267–76.

    Article  CAS  PubMed  Google Scholar 

  18. Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974;32:77–97.

    Article  CAS  PubMed  Google Scholar 

  19. Kemmler W, von Stengel S, Engelke K, et al. Exercise effects on bone mineral density, falls, coronary risk factors, and health care costs in older women: the randomized controlled senior fitness and prevention (SEFIP) study. Arch Intern Med. 2010;170:179–85.

    Article  PubMed  Google Scholar 

  20. Speakman JR, Selman C. Physical activity and resting metabolic rate. Proc Nutr Soc. 2003;62:621–34.

    Article  PubMed  Google Scholar 

  21. Stiegler P, Cunliffe A. The role of diet and exercise for the maintenance of fat-free mass and resting metabolic rate during weight loss. Sports Med. 2006;36:239–62.

    Article  PubMed  Google Scholar 

  22. Tusker F. Bestimmung von Kraftparameter eingelenkiger Kraftmessungen. Aachen: Shaker Verlag; 1994.

    Google Scholar 

  23. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome—a new world-wide definition. A consensus statement from the international diabetes federation. Diabet Med. 2006;23:469–80.

    Article  CAS  PubMed  Google Scholar 

  24. Heymsfield SB, Smith R, Aulet M. Appendicular skeletal muscle mass: measurement by dual-photon absorptiometry. Am J Clin Nutr. 1990;52:214–8.

    CAS  PubMed  Google Scholar 

  25. Marques EA, Mota J, Carvalho J. Exercise effects on bone mineral density in older adults: a meta-analysis of randomized controlled trials. Age. 2011;34:1493–515.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kemmler W, Bebenek M, Engelke K, et al. Impact of whole-body electromyostimulation on body composition in elderly women at risk for sarcopenia: the training and ElectroStimulation trial (TEST-III). Age (Dordr). 2014;36:395–406.

    Article  Google Scholar 

  27. Ferretti JL, Cointry GR, Capozza RF, et al. Bone mass, bone strength, muscle-bone interactions, osteopenias and osteoporoses. Mech Ageing Dev. 2003;124:269–79.

    Article  PubMed  Google Scholar 

  28. Qin YX, Lam H, Ferreri S, et al. Dynamic skeletal muscle stimulation and its potential in bone adaptation. J Musculoskelet Neuronal Interact. 2010;10:12–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Baumgartner RN, Koehler KM, Gallagher D, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147:755–63.

    Article  CAS  PubMed  Google Scholar 

  30. Honaker J, King G, Blackwell M. Amelia II: a program for missing data JSS. J Stat Softw. 2011;45:1–47.

    Article  Google Scholar 

  31. Seynnes OR, de Boer M, Narici MV. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol. 2007;102:368–73.

    Article  CAS  PubMed  Google Scholar 

  32. von Stengel S, Kemmler W, Engelke K. Validität von BIA im Vergleich zur DXA bei der Erfassung der Körperzusammensetzung. Deutsche Zeitschrift für Sportmedizin. 2013;62:200.

    Google Scholar 

  33. Dudley-Javoroski S, Shields RK. Muscle and bone plasticity after spinal cord injury: review of adaptations to disuse and to electrical muscle stimulation. J Rehabil Res Dev. 2008;45:283–96.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Belanger M, Stein RB, Wheeler GD, et al. Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals? Arch Phys Med Rehabil. 2000;81:1090–8.

    Article  CAS  PubMed  Google Scholar 

  35. BeDell KK, Scremin AM, Perell KL, et al. Effects of functional electrical stimulation-induced lower extremity cycling on bone density of spinal cord-injured patients. Am J Phys Med Rehabil. 1996;75:29–34.

    Article  CAS  PubMed  Google Scholar 

  36. Clark JM, Jelbart M, Rischbieth H, et al. Physiological effects of lower extremity functional electrical stimulation in early spinal cord injury: lack of efficacy to prevent bone loss. Spinal Cord. 2007;45:78–85.

    Article  CAS  PubMed  Google Scholar 

  37. Eser P, de Bruin ED, Telley I, et al. Effect of electrical stimulation-induced cycling on bone mineral density in spinal cord-injured patients. Eur J Clin Investig. 2003;33:412–9.

    Article  CAS  Google Scholar 

  38. Mohr T. Electric stimulation in muscle training of the lower extremities in persons with spinal cord injuries. Ugeskr Laeger. 2000;162:2190–4.

    CAS  PubMed  Google Scholar 

  39. Peterson MD, Sen A, Gordon PM. Influence of resistance exercise on lean body mass in aging adults: a meta-analysis. Med Sci Sports Exerc. 2011;43:249–58.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ades PA. Cardiac rehabilitation and secondary prevention of coronary heart disease. N Engl J Med. 2001;345:892–902.

    Article  CAS  PubMed  Google Scholar 

  41. Binder EF, Yarasheski KE, Steger-May K, et al. Effects of progressive resistance training on body composition in frail older adults: results of a randomized, controlled trial. J Gerontol A Biol Sci Med Sci. 2005;60:1425–31.

    Article  PubMed  Google Scholar 

  42. Nelson ME, Fiatarone MA, Layne JE, et al. Analysis of body-composition techniques and models for detecting change in soft tissue with strength training. Am J Clin Nutr. 1996;63:678–86.

    CAS  PubMed  Google Scholar 

  43. Latham NK, Bennett DA, Stretton CM, et al. Systematic review of progressive resistance strength training in older adults. J Gerontol A Biol Sci Med Sci. 2004;59:48–61.

    Article  PubMed  Google Scholar 

  44. Macaluso A, De Vito G. Muscle strength, power and adaptations to resistance training in older people. Eur J Appl Physiol. 2004;91:450–72.

    Article  PubMed  Google Scholar 

  45. Peterson MD, Rhea MR, Sen A, et al. Resistance exercise for muscular strength in older adults: a meta-analysis. Ageing Res Rev. 2010;9:226–37.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kemmler W, von Stengel S. Exercise and osteoporosis-related fractures: perspectives and recommendations of the sports and exercise scientist. Phys Sportsmed. 2011;39:142–57.

    Article  PubMed  Google Scholar 

  47. Martyn-St James M, Caroll S. High intensity exercise training and postmenopausal bone loss: a meta-analysis. Osteoporos Int. 2006;17:1225–40.

    Article  CAS  PubMed  Google Scholar 

  48. Wolff I, van Croonenborg JJ, Kemper HC, et al. The effect of exercise training programs on bone mass: a meta-analysis of published controlled trials in pre- and postmenopausal women. Osteoporos Int. 1999;9:1–12.

    Article  CAS  PubMed  Google Scholar 

  49. Pahmeier I. Bindung an Gesundheitssport [habilitation]. Bayreuth: Universität Bayreuth; 1999.

    Google Scholar 

  50. Tesch-Römer C. Gesundheit im Alter: Schicksal, soziale Schicht oder Verhalten? Berlin; 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Kemmler PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kemmler, W., von Stengel, S. (2017). Application of Electrical Modalities on Muscle Stimulation. In: Sinaki, M., Pfeifer, M. (eds) Non-Pharmacological Management of Osteoporosis. Springer, Cham. https://doi.org/10.1007/978-3-319-54016-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54016-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54014-6

  • Online ISBN: 978-3-319-54016-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics