Skip to main content
  • 1137 Accesses

Abstract

During the past five decades, sensor, actuator and image information systems (displays), in conjunction with control laws, provided important technologies to improve the flight performance and characteristics of aircraft and spacecraft. As a prerequisite for this, the revolution in the digital technology that took place in parallel led to an explosive increase in the computing power, which in turn enabled significant progress in the enhancements of features to improve flying qualities, automation, and monitoring for improved flight performance and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hamel, P. (Ed.): The Challenge of Flight Research—A Historical Account and Technical Guide, DLR-IB 111-99/02 (1999)

    Google Scholar 

  2. Levedag, S. (Ed.): Institute of Flight Systems—Status Report 2000–2008: Scientific and Technological Results (in German) (2008)

    Google Scholar 

  3. Advani, A.: Fixing the Aviators’ Achilles´ Heel, Aviation Week & Space Technology, p. 58, March 24 (2014)

    Google Scholar 

  4. Augustine, N.: Augustine’s Laws, AIAA, 6th edn (1997). ISBN-13: 978-1563472404

    Google Scholar 

  5. Howard, R.W.: Automatic flight controls in fixed wing aircraft—the first 100 years. Aeronaut. J. 77, 533–562 (1973)

    Google Scholar 

  6. Oppelt, W.: A historical review of autopilot development, research, and theory in Germany. J Dyn Syst Measur Control. 98, 215–223 (1976)

    Google Scholar 

  7. Hunt, G.H.: The evolution of fly-by-wire control techniques in the UK. Aeronaut. J. 83, 165–174 (1979)

    Google Scholar 

  8. Abzug, M.J., Larrabee E.E.: Airplane Stability and Control, Cambridge Aerospace Series. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  9. McRuer, D., Graham, D.: A flight control century: triumphs of the systems approach. AIAA J. Guidance Control Dyn. 27(2), 161–173 (2003)

    Article  Google Scholar 

  10. Carico, G.D.: Helicopter Controllability, Naval Postgraduate School, Monterey, CA, AD-A220 078 (1989)

    Google Scholar 

  11. Prouty, R.W., Curtiss Jr., H.C.: Helicopter control systems: a history. AIAA J. Guidance Control Dyn. 26(1), 12–18 (2003)

    Google Scholar 

  12. Stiles, L.R., Mayo, J., Freisner, A.L., Landis, K.H., Kothmann, B.D.: Impossible to Resist—The Development of Rotorcraft Fly-by-Wire Technology, 60th Annual Forum & Technology Display of the American Helicopter Society, Baltimore, MD, USA, June 8–10 (2004)

    Google Scholar 

  13. Breuhaus, W.O.: The variable stability airplane. AAHS J. 36(1), 30–55 (1991)

    Google Scholar 

  14. Weingarten, N.C.: History of in-flight simulation at general dynamics. AIAA J. Aircr. 42(2), 290–304 (2005)

    Google Scholar 

  15. Burns, K.R., Milliken, W.F., Statler, I.C.: The History of Aerospace Research at Cornell Aeronautical Laboratory and Calspan, Vol. 4 in a series: The Flight Research Department, AIAA 2007–0350

    Google Scholar 

  16. Milliken, W.F.: Equations of Motion—Adventure, Risk, and Innovation. Bentley Publishers (2006)

    Google Scholar 

  17. Aiken, E.W., Hindson, W.S., Lebacqz, J.V., Denery, D.G., Eshow, M.M.: Rotorcraft In-Flight Simulation Research at NASA Ames Research Center: A Review of the 80’s and Plans for the 90’s, NASA TM 103873 (1991)

    Google Scholar 

  18. Shafer, M.: In-Flight Simulation Studies at the NASA Dryden Flight Research Facility, NASA TM-4396 (1992)

    Google Scholar 

  19. Borchers, P.F., et al.: Flight Research at Ames—Fifty Years of Development and Validation of Aeronautical Technology, NASA SP-1998-3300 (1998)

    Google Scholar 

  20. Markman, S.: One-of-a-Kind Research Aircraft: A History of In-Flight Simulators, Testbeds & Prototypes. Schiffer Publishing Ltd. (2004)

    Google Scholar 

  21. Gordon, Y., Komissarov, D.: Soviet and Russian Testbed Aircraft. Hikoki Publication Ltd. (2011)

    Google Scholar 

  22. Hamel, P. (Ed.): In-Flight Simulation for the 90’s, International Symposium, July 1–3 (1991), Braunschweig, DGLR Mitteilungen 91-05 (Proceedings, Inquiries at: DLR, Institut für Flugsystemtechnik, P.O. Box 3267, 38022 Braunschweig) (1991)

    Google Scholar 

  23. Harper, R.P.: Overview: The Evolution of In-Flight Simulation at Calspan, in [22], Paper 1 (1991)

    Google Scholar 

  24. Mecham, M.: Airborne Simulation Expands, AW&ST, pp. 42–49, October 7 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Hamel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hamel, P.G. (2017). Introduction. In: Hamel, P. (eds) In-Flight Simulators and Fly-by-Wire/Light Demonstrators. Springer, Cham. https://doi.org/10.1007/978-3-319-53997-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53997-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53996-6

  • Online ISBN: 978-3-319-53997-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics