Skip to main content

Bundling Two Simple Polygons to Minimize Their Convex Hull

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10167))

Included in the following conference series:

Abstract

Given two simple polygons P and Q in the plane, we study the problem of finding a placement \(\varphi P\) of P such that \(\varphi P\) and Q are disjoint in their interiors and the convex hull of their union is minimized. We present exact algorithms for this problem that use much less space than the complexity of the Minkowski sum of P and Q. When the orientation of P is fixed, we find an optimal translation of P in \(O(n^2m^2\log n)\) time using O(nm) space, where n and m (\(n\ge m\)) denote the number of edges of P and Q, respectively. When we allow reorienting P, we find an optimal rigid motion of P in \(O(n^3m^3\log n)\) time using O(nm) space. In both cases, we find an optimal placement of P using linear space at the expense of slightly increased running time. For two polyhedra in three dimensional space, we find an optimal translation in \(O(n^3m^3 \log n)\) time using O(nm) space or in \(O(n^3m^3(m+\log n))\) time using linear space.

This work was supported by the NRF grant 2011-0030044 (SRC-GAIA) funded by the government of Korea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, H.K., Cheong, O.: Aligning two convex figures to minimize area or perimeter. Algorithmica 62, 464–479 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahn, H.K., Abardia, J., Bae, S.W., Cheong, O., Dann, S., Park, D., Shin, C.S.: The minimum convex container of two convex polytopes under translations, submitted manuscript

    Google Scholar 

  3. Ahn, H.K., Bae, S.W., Cheong, O., Park, D., Shin, C.S.: Minimum convex container of two convex polytopes under translations. In: Proceedings of the 26th Canadian Conference on Computational Geometry (CCCG 2014) (2014)

    Google Scholar 

  4. Ahn, H.K., Brass, P., Shin, C.S.: Maximum overlap and minimum convex hull of two convex polyhedra under translations. Comput. Geom. 40(2), 171–177 (2008). http://www.sciencedirect.com/science/article/pii/S0925772107000909

    Article  MathSciNet  MATH  Google Scholar 

  5. Alt, H., Hurtado, F.: Packing convex polygons into rectangular boxes. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 2000. LNCS, vol. 2098, pp. 67–80. Springer, Heidelberg (2001). doi:10.1007/3-540-47738-1_5

    Chapter  Google Scholar 

  6. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geomtry, Algorithms and Applications, 3rd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  7. Daniels, K., Milenkovic, V.: Multiple translational containment, part I: an approximation algorithm. Algorithmica 19, 148–182 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guibas, L., Ramshaw, L., Stolfi, J.: A kinetic framework for computational geometry. In: Proceedings of the 24th Annual Symposium on Foundations of Computer Science (FOCS 1983), pp. 100–111. IEEE (1983)

    Google Scholar 

  9. Kaul, A., O’Connor, M.A., Srinivasan, V.: Computing Minkowski sums of regular polygons. In: Proceedings of the 3rd Canadian Conference on Computational Geometry (CCCG 1991), pp. 74–77 (1991)

    Google Scholar 

  10. Kepler, J.: Vom sechseckigen Schnee, Ostwalds Klassiker der Exakten Wissenschaften, vol. 273. Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, strena seu de Nive sexangula, Translated from the Latin and with an introduction and notes by Dorothea Goetz (1987)

    Google Scholar 

  11. Lee, H.C., Woo, T.C.: Determining in linear time the minimum area convex hull of two polygons. IIE Trans. 20(4), 338–345 (1988)

    Article  Google Scholar 

  12. Milenkovic, V.: Rotational polygon containment and minimum enclosure using robust 2D constructions. Comput. Geom.: Theory Appl. 13, 3–19 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ramkumar, G.: An algorithm to compute the Minkowski sum outer-face of two simple polygons. In: Proceedings of the 12th Annual Symposium on Computational Geometry (SoCG 1996), pp. 234–241. ACM (1996)

    Google Scholar 

  14. Sugihara, K., Sawai, M., Sano, H., Kim, D.S., Kim, D.: Disk packing for the estimation of the size of a wire bundle. Jpn. J. Ind. Appl. Math. 21, 259–278 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tang, K., Wang, C.C.L., Chen, D.Z.: Minimum area convex packing of two convex polygons. Int. J. Comput. Geom. Appl. 16(1), 41–74 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Kap Ahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Choi, J., Park, D., Ahn, HK. (2017). Bundling Two Simple Polygons to Minimize Their Convex Hull. In: Poon, SH., Rahman, M., Yen, HC. (eds) WALCOM: Algorithms and Computation. WALCOM 2017. Lecture Notes in Computer Science(), vol 10167. Springer, Cham. https://doi.org/10.1007/978-3-319-53925-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53925-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53924-9

  • Online ISBN: 978-3-319-53925-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics