Abstract
Given two simple polygons P and Q in the plane, we study the problem of finding a placement \(\varphi P\) of P such that \(\varphi P\) and Q are disjoint in their interiors and the convex hull of their union is minimized. We present exact algorithms for this problem that use much less space than the complexity of the Minkowski sum of P and Q. When the orientation of P is fixed, we find an optimal translation of P in \(O(n^2m^2\log n)\) time using O(nm) space, where n and m (\(n\ge m\)) denote the number of edges of P and Q, respectively. When we allow reorienting P, we find an optimal rigid motion of P in \(O(n^3m^3\log n)\) time using O(nm) space. In both cases, we find an optimal placement of P using linear space at the expense of slightly increased running time. For two polyhedra in three dimensional space, we find an optimal translation in \(O(n^3m^3 \log n)\) time using O(nm) space or in \(O(n^3m^3(m+\log n))\) time using linear space.
This work was supported by the NRF grant 2011-0030044 (SRC-GAIA) funded by the government of Korea.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahn, H.K., Cheong, O.: Aligning two convex figures to minimize area or perimeter. Algorithmica 62, 464–479 (2012)
Ahn, H.K., Abardia, J., Bae, S.W., Cheong, O., Dann, S., Park, D., Shin, C.S.: The minimum convex container of two convex polytopes under translations, submitted manuscript
Ahn, H.K., Bae, S.W., Cheong, O., Park, D., Shin, C.S.: Minimum convex container of two convex polytopes under translations. In: Proceedings of the 26th Canadian Conference on Computational Geometry (CCCG 2014) (2014)
Ahn, H.K., Brass, P., Shin, C.S.: Maximum overlap and minimum convex hull of two convex polyhedra under translations. Comput. Geom. 40(2), 171–177 (2008). http://www.sciencedirect.com/science/article/pii/S0925772107000909
Alt, H., Hurtado, F.: Packing convex polygons into rectangular boxes. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 2000. LNCS, vol. 2098, pp. 67–80. Springer, Heidelberg (2001). doi:10.1007/3-540-47738-1_5
de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geomtry, Algorithms and Applications, 3rd edn. Springer, Berlin (2008)
Daniels, K., Milenkovic, V.: Multiple translational containment, part I: an approximation algorithm. Algorithmica 19, 148–182 (1997)
Guibas, L., Ramshaw, L., Stolfi, J.: A kinetic framework for computational geometry. In: Proceedings of the 24th Annual Symposium on Foundations of Computer Science (FOCS 1983), pp. 100–111. IEEE (1983)
Kaul, A., O’Connor, M.A., Srinivasan, V.: Computing Minkowski sums of regular polygons. In: Proceedings of the 3rd Canadian Conference on Computational Geometry (CCCG 1991), pp. 74–77 (1991)
Kepler, J.: Vom sechseckigen Schnee, Ostwalds Klassiker der Exakten Wissenschaften, vol. 273. Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, strena seu de Nive sexangula, Translated from the Latin and with an introduction and notes by Dorothea Goetz (1987)
Lee, H.C., Woo, T.C.: Determining in linear time the minimum area convex hull of two polygons. IIE Trans. 20(4), 338–345 (1988)
Milenkovic, V.: Rotational polygon containment and minimum enclosure using robust 2D constructions. Comput. Geom.: Theory Appl. 13, 3–19 (1999)
Ramkumar, G.: An algorithm to compute the Minkowski sum outer-face of two simple polygons. In: Proceedings of the 12th Annual Symposium on Computational Geometry (SoCG 1996), pp. 234–241. ACM (1996)
Sugihara, K., Sawai, M., Sano, H., Kim, D.S., Kim, D.: Disk packing for the estimation of the size of a wire bundle. Jpn. J. Ind. Appl. Math. 21, 259–278 (2004)
Tang, K., Wang, C.C.L., Chen, D.Z.: Minimum area convex packing of two convex polygons. Int. J. Comput. Geom. Appl. 16(1), 41–74 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Choi, J., Park, D., Ahn, HK. (2017). Bundling Two Simple Polygons to Minimize Their Convex Hull. In: Poon, SH., Rahman, M., Yen, HC. (eds) WALCOM: Algorithms and Computation. WALCOM 2017. Lecture Notes in Computer Science(), vol 10167. Springer, Cham. https://doi.org/10.1007/978-3-319-53925-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-53925-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-53924-9
Online ISBN: 978-3-319-53925-6
eBook Packages: Computer ScienceComputer Science (R0)