Skip to main content

Bridging Structure and Real-Space Topology: Understanding Complex Molecules and Solid-State Materials

  • Chapter
  • First Online:
Book cover Recent Advances in Complex Functional Materials

Abstract

Structural elucidation through experiments (e.g., X-ray diffraction and Rietveld refinements) and quantum chemical computations has seen tremendous progress in the last few decades. In particular, the characterization of crystalline substances at the level of electron density has become possible owing to new X-ray diffraction instrumentation and an increasing number of tools suitable for the description and treatment of the tiny details at the electron density level. However, despite the contemporary high standards for the determination of geometrical parameters, questions about chemical bonding are still highly controversial. The “classical” concepts of bonding analysis and the corresponding chemical reactivity have been seriously challenged in cases of multicenter-bonded systems, or materials subjected to certain special conditions, such as high pressures or irradiation by electron beams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atkins P, de Paula J (2006) Atkins’ physical chemistry, 8th ed, vol 2. WH Freeman and Company. New York

    Google Scholar 

  2. Shaik S, Rzepa HS, Hoffmann R (2013) Angew Chem Int Ed Engl 52:3020

    Article  Google Scholar 

  3. Frenking G, Hermann M (2013) Angew Chem Int Ed Engl 52:5922

    Article  Google Scholar 

  4. Danovich D, Shaik S, Rzepa HS, Hoffmann R (2013) Angew Chem-Int Ed 52:5926

    Article  Google Scholar 

  5. Zou W, Cremer D (2015) Chem Eur J 21:1

    Article  Google Scholar 

  6. Zhong RL, Zhang M, Xu HL, Su ZM (2016) Chem Sci 7:1028

    Article  Google Scholar 

  7. Piris M, López X, Ugalde JM (2016) Chem Eur J 22:4109

    Article  Google Scholar 

  8. Zou WL, Cremer D (2016) Chem Eur J 22:4087

    Article  Google Scholar 

  9. Oliveira de Sousa DW, Chaer Nascimento MAJ (2016) Chem Theor Comput 12:2234

    Article  Google Scholar 

  10. Weinhold F, Klein RA (2014) Angew Chem-Int Ed 53:11214

    Article  Google Scholar 

  11. Frenking G, Caramori GF (2015) Angew Chem Int Ed 54:2596

    Article  Google Scholar 

  12. Frenking G, Krapp A (2007) J Comput Chem 28:15

    Article  Google Scholar 

  13. Bremer M, Untenecker H, Gunchenko PA, Fokin AA, Schreiner PR (2015) J Org Chem 80:6520

    Article  Google Scholar 

  14. Graham AG, Mota F, Shurdha E, Rheingold AL, Novoa JJ, Miller JS (2015) Chem Eur J 21:13240

    Article  Google Scholar 

  15. Harcourt RD, Chem J (2015) Theor Comput 11:1979

    Article  Google Scholar 

  16. Braida B, Hendrickx K, Domin D, Dinnocenzo JP, Hiberty PC (2013) J Chem Theor Comput 9:2276

    Article  Google Scholar 

  17. Capdevila Cortada M, Ribas-Ariño J, Chaumont A, Wipff G, Novoa JJ (2016) Chem Eur J 22:1

    Article  Google Scholar 

  18. Wolstenholme DJ, Dobson JL, McGrady GS (2015) Dalton Trans 44:9718

    Article  Google Scholar 

  19. Hicks J, Underhill EJ, Kefalidis CE, Maron L, Jones C (2015) Angew Chem Int Ed 54:1

    Article  Google Scholar 

  20. Butovskii MV, Kempe R (2015) New J Chem 39:7544

    Article  Google Scholar 

  21. Blake MP, Kaltsoyannis N, Mountford P (2015) Chem Commun 51:5743

    Article  Google Scholar 

  22. Cui P, Hu H-S, Zhao B, Miller JT, Cheng P, Li J (2015) Nat Commun 6:6331

    Google Scholar 

  23. Dairaku T, Furuita K, Sato H, Sêbera J, Yamanaka D, Otaki H, Kikkawa S, Kondo Y, Katahira R, Bickelhaupt FM, Fonseca Guerra C, Ono A, Sychrovsky V, Kojima C, Tanaka Y (2015) Chem Commun 51:8488

    Article  Google Scholar 

  24. Qian L, Chen JF, Li YH, Wu L, Wang HF, Chen AP, Hu P, Zheng LR, Yang HG (2015) Angew Chem 127:1

    Article  Google Scholar 

  25. Gardner BM, Balázs G, Scheer M, Tuna F, McInnes EJ, McMaster J, Lewis W, Blake AJ, Liddle ST (2015) Nat Chem 7:582

    Article  Google Scholar 

  26. Bauzá A, Frontera A (2015) Angew Chem Int Ed 54:1

    Article  Google Scholar 

  27. Matsumoto K, Haner J, Mercier HPA, Schrobilgen GJ (2015) Angew Chem Int Ed 54:1

    Article  Google Scholar 

  28. Zhang Q, Li W-L, Xu C-Q, Chen M, Zhou M, Li J, Andrada DM, Frenking G (2015) Angew Chem Int Ed 54:1

    Article  Google Scholar 

  29. Braunschweig H, Dewhurst RD, Hupp F, Nutz M, Radacki K, Tate CW, Vargas A, Ye Y (2015) Nature 522:327

    Article  Google Scholar 

  30. Frenking G (2015) Nature 522:297

    Article  Google Scholar 

  31. Chou S-L, Lo J-I, Peng Y-C, Lin M-Y, Lu H-C, Cheng B-M, Ogilvie JF (2015) Chem Sci 6:6872

    Article  Google Scholar 

  32. Braunschweig H, Dewhurst RD, Hammond K, Mies J, Radacki K, Vargas A (2012) Science 336:1420

    Article  Google Scholar 

  33. Pyykkö P, Riedel S, Patzschke M (2005) Chem Eur J 11:3511

    Article  Google Scholar 

  34. Holzmann N, Stasch A, Jones C, Frenking G (2011) Chem Eur J 17:13517

    Article  Google Scholar 

  35. Holzmann N, Stasch A, Jones C, Frenking G (2013) Chem Eur J 19:6467

    Article  Google Scholar 

  36. Köppe R, Schnöckel H (2015) Chem Sci 6:1199

    Article  Google Scholar 

  37. Frenking G, Holzmann N (2012) Science 336:1394

    Article  Google Scholar 

  38. Mondal KC, Roesky HW, Schwarzer MC, Frenking G, Tkach I, Wolf H, Kratzert D, Herbst-Irmer R, Niepötter B, Stalke D (2013) Angew Chem Int Ed 52:1801

    Article  Google Scholar 

  39. Holzmann N, Hermann M, Frenking G (2015) Chem Sci 6:4089

    Article  Google Scholar 

  40. Yuan C, Zhao X-F, Wu YB, Wang X (2016) Angew chem Int Ed 55:15651

    Google Scholar 

  41. Lee VY, Sekiguchi A (2010) Organometallic compounds of low coordinate Si, Ge, Sn and Pb. Wiley, Chichester

    Book  Google Scholar 

  42. Fischer RC, Power PP (2010) Chem Rev 110:3877

    Article  Google Scholar 

  43. Frenking G, Tonner R, Klein S, Takagi N, Shimizu T, Krapp A, Pandey KK, Parameswaran P (2014) Chem Soc Rev 43:5106

    Article  Google Scholar 

  44. Guo J-D, Liptrot DJ, Nagase S, Power PP (2015) Chem Sci 6:6235

    Article  Google Scholar 

  45. Ruschewitz U (2016) Angew Chem Int Ed 55:3264

    Article  Google Scholar 

  46. Stammler H-G, Blomeyer S, Berger RJF, Mitzel NW (2015) Angew Chem Int Ed 54:1

    Article  Google Scholar 

  47. Ohno K, Satoh H, Iwamoto T, Tokoyama H, Yamakado H (2015) Chem Phys Lett 639:178

    Article  Google Scholar 

  48. Knowles RR, Jacobsen EN (2010) Proc Natl Acad Sci U S A 107:20678

    Article  Google Scholar 

  49. Riley KE, Hobza P (2011) Wiley Interdiscip Rev-Comput Mol Sci 1:3

    Article  Google Scholar 

  50. Wagner JP, Schreiner PR (2015) Angew Chem Int Ed 54:12274

    Article  Google Scholar 

  51. Grimme S (2011) Wiley Interdiscip Rev-Comput Mol Sci 1:211

    Article  Google Scholar 

  52. Ehrlich S, Moellmann J, Grimme S (2013) Acc Chem Res 46:916

    Article  Google Scholar 

  53. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157

    Article  Google Scholar 

  54. Zhao Y, Cotelle Y, Sakai N, Matile S (2016) J Am Chem Soc 138:4270

    Article  Google Scholar 

  55. Woolley RG (1991) Theochem-J Mol Struct 76:17

    Article  Google Scholar 

  56. Woolley RG (1998) J Mater Chem 23:3

    Google Scholar 

  57. Fetter AL, Walecka JD (2003) Quantum theory of many-particle systems; 1st Dover (ed). Dover Publications, Mineola

    Google Scholar 

  58. Mattuck RD (1992) A guide to Feynman diagrams in the many-body problem, 2nd edn. Dover Publications, New York

    Google Scholar 

  59. Lowdin PO (1991) Theochem 76:1

    Google Scholar 

  60. Schleyer PV (2005) Chem Rev 105:3433

    Article  Google Scholar 

  61. Popelier PLA (2007) Faraday Discuss 135:3

    Article  Google Scholar 

  62. Alabugin IV, Gilmore KM, Peterson PW (2011) Wiley Interdiscip Rev-Comput Mol Sci 1:109

    Article  Google Scholar 

  63. Ritter SK (2013) Chem Eng News 91:28

    Google Scholar 

  64. Kutzelnigg W (1990) In: Maksic ZB (ed) Theoretical models of chemical bonding: part 2. Springer, The physical origin of the chemical bond, Berlin, p 1

    Google Scholar 

  65. Ruedenberg K (1962) Rev Mod Phys 34:326

    Article  Google Scholar 

  66. Danovich D, Hiberty PC, Wu W, Rzepa HS, Shaik S (2014) Chem Eur J 20:6220

    Article  Google Scholar 

  67. Kling MF, von den Hoff P, Znakovskaya I, de Vivie-Riedle R (2013) Phys Chem Chem Phys 15:9448

    Article  Google Scholar 

  68. Kling MF, Siedschlag C, Verhoef AJ, Khan JI, Schultze M, Uphues T, Ni Y, Uiberacker M, Drescher M, Krausz F, Vrakking MJJ (2006) Science 312:246

    Article  Google Scholar 

  69. Xie X, Doblhoff-Dier K, Roither S, Schöffler MS, Kartashov D, Xu H, Rathje T, Paulus GG, Baltuska A, Gräfe S, Kitzler M (2012) Phys Rev Lett 109:243001

    Article  Google Scholar 

  70. Liu Y, Liu X, Deng Y, Wu C, Jiang H, Gong Q (2011) Phys Rev Lett 106:073004

    Article  Google Scholar 

  71. Znakovskaya I, von den Hoff P, Marcus G, Zherebtsov S, Bergues B, Gu X, Deng Y, Vrakking MJJ, Kienberger R, Krausz F, de Vivie-Riedle R, Kling MF (2012) Phys Rev Lett 108:063002

    Article  Google Scholar 

  72. Xu H, Xu T-Y, He F, Kielpinski D, Sang RT, Litvinyuk IV (2014) Phys Rev A 89:041403

    Article  Google Scholar 

  73. Alnaser AS, Kübel M, Siemering R, Bergues B, Kling NG, Betsch KJ, Deng Y, Schmidt J, Alahmed ZA, Azzeer AM, Ullrich J, Ben-Itzhak I, Moshammer R, Kleineberg U, Krausz F, de Vivie-Riedle R, Kling MF (2014) Nat Commun 5:3800

    Article  Google Scholar 

  74. Xie X, Doblhoff-Dier K, Xu H, Roither S, Schöffler MS, Kartashov D, Erattupuzha S, Rathje T, Paulus GG, Yamanouchi K, Baltuska A, Gräfe S, Kitzler M (2014) Phys Rev Lett 112:163003

    Article  Google Scholar 

  75. Xie X, Roither S, Schöffler MS, Lötstedt E, Kartashov D, Zhang L, Paulus GG, Iwasaki A, Baltuska A, Yamanouchi K, Kitzler M (2014) Phys Rev X 4:021005

    Google Scholar 

  76. Xie X, Lötstedt E, Roither S, Schöffler MS, Kartashov D, Midorikawa K, Baltuska A, Yamanouchi K, Kitzler M (2015) Sci Rep 5:12877

    Article  Google Scholar 

  77. Heisenberg W (1926) Z f Phys 38:411

    Article  Google Scholar 

  78. Farmelo G (2009) The strangest man: he hidden life of Paul Dirac, mystic of the atom. Basic Books, New York

    Google Scholar 

  79. Parr RG, Yang WT (1995) Annu Rev Phys Chem 46:701

    Article  Google Scholar 

  80. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  Google Scholar 

  81. Parr RG, Yang WT (1984) J Am Chem Soc 106:4049

    Article  Google Scholar 

  82. Hohenberg PC, Kohn W (1964) Phys Ther Rev 136:B864

    Google Scholar 

  83. Kohn W, Sham LJ (1965) Phys Ther Rev 140:A1133

    Google Scholar 

  84. Stalke D (2011) Chem Eur J 17:9264

    Article  Google Scholar 

  85. Karadakov PB, Horner KE (2016) J Chem Theor Comput 12:558

    Article  Google Scholar 

  86. Nalewajski RF (2000) J Phys Chem A 104:11940

    Article  Google Scholar 

  87. Nalewajski RF (2004) Mol Phys 102:531

    Article  Google Scholar 

  88. Nalewajski RF (2009) J Mater Chem 47:692

    Google Scholar 

  89. Nalewajski RF, Gurdek P (2012) Struct Chem 23:1383

    Google Scholar 

  90. Boguslawski K, Tecmer P, Legeza O, Reiher M (2012) J Phys Chem Lett 3:3129

    Article  Google Scholar 

  91. Boguslawski K, Tecmer P, Barcza G, Legeza O, Reiher M (2013) J Chem Theor Comput 9:2959

    Article  Google Scholar 

  92. Mottet M, Tecmer P, Boguslawski K, Legeza O, Reiher M (2014) Phys Chem Chem Phys 16:8872

    Article  Google Scholar 

  93. Shannon CE (1948) Bell Syst Tech J 27:623

    Article  Google Scholar 

  94. Fisher RA (1925) Proc Camb Philos Soc 22:700

    Article  Google Scholar 

  95. Ghosh SK, Berkowitz M, Parr RG (1984) Proc Natl Acad Sci U S A 81:8028

    Article  Google Scholar 

  96. Rong CY, Lu T, Chattaraj PK, Liu SB, Indian J (2014) Chem A 53:970

    Google Scholar 

  97. Kullback S (1997) Information theory and statistics. Dover, Mineola

    Google Scholar 

  98. Esquivel RO, Angulo JC, Dehesa JS, Antolín J, López-Rosa SL, Flores-Gallegos N, Molina-Espíritu M, Iuga C (2012) In: Deloumeaux P, Gorzalka JD (eds) Recent advances toward the nascent science of quantum information chemistry in information theory: new research. Nova Science Publishers, Hauppage, p 297

    Google Scholar 

  99. Esquivel RO, Flores-Gallegos N, Iuga C, Carrera EM, Angulo JC, Antolín J (2009) Theor Chem Accounts 124:445

    Article  Google Scholar 

  100. Esquivel RO, Molina-Espíritu M, Plastino AR, Dehesa JS (2015) Int J Quantum Chem 115:1417

    Google Scholar 

  101. Molina-Espíritu M, Esquivel RO, López-Rosa SL, Dehesa JS (2015) J Chem Theor Comput 11:5144

    Article  Google Scholar 

  102. Lewis GN (1916) J Am Chem Soc 38:762

    Article  Google Scholar 

  103. Pauling L (1931) J Am Chem Soc 53:1367

    Article  Google Scholar 

  104. Pauling L (1931) J Am Chem Soc 53:3225

    Article  Google Scholar 

  105. Pauling L (1932) J Am Chem Soc 54:988

    Article  Google Scholar 

  106. Pauling L (1948) The nature of the chemical bond. Cornell University Press, Ithaca

    Google Scholar 

  107. Shaik SS, Shurki A (1999) Angew Chem Int Ed 38:586

    Article  Google Scholar 

  108. Shurki A, Derat E, Barrozo A, Kamerlin SCL (2015) Chem Soc Rev 44:1037

    Article  Google Scholar 

  109. Popelier PLA (2005) In: Wales DJ (ed) Structure and bonding: intermolecular forces and clusters I, Quantum chemical topology: on bonds and potentials, vol 115. Springer, Heidelberg

    Google Scholar 

  110. Popelier PLA, Bremond EAG (2009) Int J Quantum Chem 109:2542

    Article  Google Scholar 

  111. Gatti C, Macchi P (2012) Modern charge density analysis. Springer, New York

    Book  Google Scholar 

  112. Popelier PLA (2014) In: Frenking G, Shaik S (eds) The chemical bond: fundamental aspects of chemical bonding. Wiley, VCH, p 271

    Chapter  Google Scholar 

  113. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  114. Silvi B, Savin A (1994) Nature 371:683

    Article  Google Scholar 

  115. Silvi B (2004) Phys Chem Chem Phys 6:256

    Article  Google Scholar 

  116. Vieira FS, Fantuzzi F, Cardozo TM, Chaer Nascimento MA (2013) J Phys Chem A 117:4025

    Article  Google Scholar 

  117. Kumar A, Shridhar RG (2016) J Chem Theor Comput. 12:1705

    Article  Google Scholar 

  118. Bader RFW, Henneker WH (1965) J Am Chem Soc 87:3063

    Article  Google Scholar 

  119. Sini G, Maitre P, Hiberty PC, Shaik SS (1991) Theochem-J Mol Struct 75:163

    Article  Google Scholar 

  120. Chesnut DB (2008) J Chem Theory Comput 4:1637

    Article  Google Scholar 

  121. Shaik S, Danovich D, Wu W, Hiberty PC (2009) Nat Chem 1:443

    Article  Google Scholar 

  122. Gamez JA, Yáñez M (2013) J Chem Theory Comput 9:5211

    Article  Google Scholar 

  123. Goddard WA, III, Harding LB (1978) The description of chemical bonding from ab initio calculations. Ann Rev Phys Chem 29:363

    Google Scholar 

  124. Kovacs A, Esterhuysen C, Frenking G (2005) Chem Eur J 11:1813

    Article  Google Scholar 

  125. Gadre SR, Shrivastava IH (1991) J Chem Phys 94:4384

    Article  Google Scholar 

  126. Kumar A, Gadre SR, Chenxia X, Tianlv X, Kirk SR, Jenkins S (2015) Phys Chem Chem Phys 17:15258

    Article  Google Scholar 

  127. Leboeuf M, Köster AM, Jug K, R. SD (1999) J Chem Phys 111:4893

    Article  Google Scholar 

  128. Roy D, Balanarayan P, Gadre SR (2008) J Chem Phys 129:174103

    Article  Google Scholar 

  129. Ayers PL, Boyd RJ, Bultink P, Caffarel M, Carbó-Dorca R, Causá M, Cioslowski J, Contreras-García J, Cooper DL, Coppens P, Gatti C, Grabowsky S, Lazzaretti P, Macchi P, Martín-Pendás A, Popelier PLA, Ruedenberg K, Rzepa H, Savin A, Sax A, Schwarz WHE, Shahbazian S, Silvi B, Solà M, Tsirelson V (2015) Comput Theor Chem 1053:2

    Article  Google Scholar 

  130. Popelier PLA (2005) In: Wales DJ (ed) Structure and bonding, Intermolecular forces and clusters-quantum chemical topology: on bonds and potentials, vol 115. Springer, Berlin, p 1

    Google Scholar 

  131. Noury S, Krokidis X, Fuster F, Silvi B (1999) Comput Chem 23:597

    Article  Google Scholar 

  132. Popelier PLA (1996) Comput Phys Commun 93:212

    Article  Google Scholar 

  133. Kohout M, Wagner FR, Grin Y (2002) Theor Chem Accounts 108:150

    Article  Google Scholar 

  134. Biegler-Konig F, Schonbohm J, Bayles D (2001) J Comput Chem 22:545

    Article  Google Scholar 

  135. Otero-de-la-Roza A, Blanco MA, Pendas AM, Luana V (2009) Comput Phys Commun 180:157

    Article  Google Scholar 

  136. Gillespie RJ, Popelier PLA (2001) Chemical bonding and molecular geometry: from Lewis to electron densities. Oxford University Press, New York

    Google Scholar 

  137. de Courcy B, Pedersen LG, Parisel O, Gresh N, Silvi B, Pilme J, Piquemal JP (2010) J Chem Theory Comput 6:1048

    Article  Google Scholar 

  138. Pilme J, Berthoumieux H, Robert V, Fleurat-Lessard P (2007) Chem Eur J 13:5388

    Article  Google Scholar 

  139. de la Lande A, Maddaluno J, Parisel O, Darden TA, Piquemal JP (2010) Interdiscip Sci-Comput Life Sci 2:3

    Article  Google Scholar 

  140. Berski S, Andrés J, Silvi B, Domingo LR (2006) J Phys Chem A 110:13939

    Article  Google Scholar 

  141. Poater J, Duran M, Sola M, Silvi B (2005) Chem Rev 105:3911

    Article  Google Scholar 

  142. Pauzat F, Pilme J, Toulouse J, Ellinger Y (2010) J Chem Phys 133:054301

    Article  Google Scholar 

  143. Rivera-Fuentes P, Aonso-Gomez JL, Petrovic AG, Seiler P, Santoro F, Harada N, Berova N, Rzepa HS, Diederich F (2010) Chem Eur J 16:9796

    Article  Google Scholar 

  144. Kozlowski D, Pilmé J (2011) J Comput Chem 32:3207

    Article  Google Scholar 

  145. Jenkins S (2013) Int J Quantum Chem 113:1603

    Article  Google Scholar 

  146. Koritsanszky TS, Coppens P (2001) Chem Rev 101:1583

    Article  Google Scholar 

  147. Coppens P (1997) X-ray charge densities and chemical bonding. Oxford University Press, Oxford

    Google Scholar 

  148. Popelier PL (2000) Atoms in molecules: an introduction. Pearson Education, Harlow

    Book  Google Scholar 

  149. Tsirelson VG, Ozerov RP (1996) Electron density and bonding in crystals. Institute of physics publishing, Bristol

    Google Scholar 

  150. Jeffrey GA, Piniella JF (1991) The applications of charge density research to chemistry and drug design. Springer, New York

    Book  Google Scholar 

  151. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH, Weinheim

    Book  Google Scholar 

  152. Chopra D (2012) J Phys Chem A 116:9791

    Article  Google Scholar 

  153. Pendás AM, Hernández-Trujillo J (2012) J Chem Phys 137:134101

    Article  Google Scholar 

  154. Dillen J (2015) J Comput Chem 36:883

    Article  Google Scholar 

  155. Bader RFW (1994) Phys Rev B 49:13348

    Article  Google Scholar 

  156. Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397

    Article  Google Scholar 

  157. Firme CL, Barreiro NBP, Esteves PM, Correa RJ (2008) J Phys Chem A 112:686

    Article  Google Scholar 

  158. Rzepa H (2011) J Chem Theor Comput 7:97

    Article  Google Scholar 

  159. Otero de la Roza A, Luaña V (2010) J Chem Theor Comput 6:3761

    Article  Google Scholar 

  160. Otero de la Roza A, Luaña V (2011) J Phys Chem A 115:12953

    Article  Google Scholar 

  161. Vidal I, Sánchez Navas A (2014) J Mol Model 20:2425

    Article  Google Scholar 

  162. Grabowsky SJ, Phys J (2012) Chem A 116:1838

    Google Scholar 

  163. Jenkins S, Rong C, Kirk SR, Yin D, Liu S (2011) J Phys Chem A 115:12503

    Article  Google Scholar 

  164. Mierzwicki K, Berski S, Latajka Z (2011) Chem Phys Lett 507:29

    Article  Google Scholar 

  165. Syzgantseva OA, Tognetti V, Loubert L (2013) J Phys Chem A 117:8969

    Article  Google Scholar 

  166. Andrés J, Gracia L, Gonzalez-Navarrete P, Safont VS (2015) Comput Theor Chem 1053:17

    Article  Google Scholar 

  167. García-Revilla M, Popelier PLA, Francisco E, Martín-Pendás A (2011) J Chem Theor Comput 7:1704

    Article  Google Scholar 

  168. Heverly-Coulson GS, Boyd RJ (2012) J Chem Theor Comput 8:5052

    Article  Google Scholar 

  169. Savin A, Jepsen O, Flad J, Andersen OK, Preuss H, Schnering HG v (1992) Angew Chem Int Ed Engl 31:187

    Article  Google Scholar 

  170. Savin A, Nesper R, Wengert S, Fässler TF (1997) Angew Chem Int Ed Engl 36:1808

    Article  Google Scholar 

  171. Chesnut DB (2000) J Phys Chem A 104:11644

    Article  Google Scholar 

  172. Fuentealba P, Chamorro E, Santos JC (2007) Theor Comp Chem 19:57

    Article  Google Scholar 

  173. Silvi B, Fourre I, Alikhani ME (2005) Monatshefte Fur Chemie 136:855

    Article  Google Scholar 

  174. Ball P (2011) Nature 469:26

    Article  Google Scholar 

  175. Shaik S (2006) J Comput Chem 28:51

    Article  Google Scholar 

  176. Coleman AJ, Yukalov VI (2000) Reduced density matrices: coulson’s challenge. Springer, New York

    Book  Google Scholar 

  177. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  178. Bader RFW (1994) Atoms in molecules: a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  179. Sorribes I, Wienhofer G, Vicent C, Junge K, LLusar R, Beller M (2102) Angew Chem Int Ed 51:7794

    Article  Google Scholar 

  180. Pedrajas E, Sorribes I, Junge K, Beller M, Llusar R (2015) ChemCatChem 7:2675

    Article  Google Scholar 

  181. Feliz M, Guillamon E, Llusar R, Vicent C, Stiriba SE, Perez-Prieto J, Barberis M (2006) Chem Eur J 12:1486

    Article  Google Scholar 

  182. Guillamon E, Llusar R, Pérez-Prieto J, Stiriba SE (2008) J Organomet Chem 693:1723

    Article  Google Scholar 

  183. Guillamon E, Blasco M, Llusar R (2010) Inorg Chim Acta 424:5935

    Google Scholar 

  184. Alfonso C, Feliz M, Safont VS, Llusar R (2016) Dalton Trans 45:7829

    Article  Google Scholar 

  185. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Revision B.01 ed. Gaussian Inc, Wallingford

    Google Scholar 

  186. Becke AD (1988) Phys Rev A 38:3098

    Google Scholar 

  187. Becke AD (1993) J Chem Phys 98:5648

    Google Scholar 

  188. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  Google Scholar 

  189. Xu DF, Cheng B, Zhang JF, Wang WK, Yu JG, Ho WK (2015) J Mater Chem A 3:20153

    Article  Google Scholar 

  190. Liu Y, Yu HB, Cai M, Sun JW (2012) Cat Com 26:63

    Article  Google Scholar 

  191. Soofivand F, Mohandes F, Salavati-Niasari M (2013) Mater Res Bull 48:2084

    Article  Google Scholar 

  192. Xu DF, Cheng B, Cao SW, Yu JG (2015) Appl Catal B-Environ 164:380

    Article  Google Scholar 

  193. Xu DF, Cao SW, Zhang JF, Cheng B, Yu JG (2014) Beilstein J Nanotechnol 5:658

    Article  Google Scholar 

  194. Andres J, Gracia L, Gonzalez-Navarrete P, Longo VM, Avansi W Jr, Volanti DP, Ferrer MM, Lemos PS, La Porta FA, Hernandes AC, Longo E (2014) Sci Rep 4:5391

    Article  Google Scholar 

  195. Pereira WdS, Andres J, Gracia L, San-Miguel MA, da Silva EZ, Longo E, Longo VM (2015) Phys Chem Chem Phys 17:5352

    Google Scholar 

  196. Andrés J, Ferrer MM, Gracia L, Beltran A, Longo VM, Cruvinel GH, Tranquilin RL, Longo E (2015) Part Part Syst Charact 32:646

    Google Scholar 

  197. Longo E, Cavalcante LS, Volanti DP, Gouveia AF, Longo VM, Varela JA, Orlandi MO, Andres J (2013) Sci Rep 3:1676

    Google Scholar 

  198. Botelho G, Sczancoski JC, Andres J, Gracia L, Longo E (2015) J Phys Chem C 119:6293

    Google Scholar 

  199. Roca RA, Gouveia AF, Lemos PS, Gracia L, Andrés J, Longo E (2016) Inorg Chem 55:8661

    Article  Google Scholar 

  200. Oliveira RC d, Assis M, Mondego M, Penha M, Li MS, Andres J, Gracia L, Longo E (2016) J Phys Chem C 120:12254

    Article  Google Scholar 

  201. Fabbro MT, Gracia L, Silva GS, Santos LPS, Andrés J, Cordoncillo E, Longo E (2016) J Solid State Chem 239:220

    Article  Google Scholar 

  202. Kresse G, Furthmuller J (1996) Comput Mater Sci 6:15

    Article  Google Scholar 

  203. Kresse G, Hafner J (1994) Phys Rev B 49:14251

    Article  Google Scholar 

  204. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    Article  Google Scholar 

  205. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  Google Scholar 

  206. Mulliken RS (1928) Phys Rev 32:186

    Article  Google Scholar 

  207. Heitler W, London F (1927) Z Physiother 44:455

    Google Scholar 

  208. Sunko DE (1983) Pure Appl Chem 55:375

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Andrés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Andrés, J., Safont, V.S., Gracia, L., Llusar, R., Longo, E. (2017). Bridging Structure and Real-Space Topology: Understanding Complex Molecules and Solid-State Materials. In: Longo, E., La Porta, F. (eds) Recent Advances in Complex Functional Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-53898-3_17

Download citation

Publish with us

Policies and ethics