Nanostructured Functional Materials: Silver Nanoparticles in Polymer for the Generation of Antimicrobial Characteristics

  • Luiz Fernando GorupEmail author
  • Francisco N. Souza Neto
  • Andressa M. Kubo
  • José Antonio Santos Souza
  • Renan Aparecido Fernandes
  • Gabriela Lopes Fernandes
  • Douglas Roberto Monteiro
  • Debora Barros Barbosa
  • Emerson Rodrigues Camargo


The application of nanosized and nanostructured materials in ordinary life is the other side of the coin that emerged from the scientific progress. It established a new interdisciplinary point of view about the behavior of atoms and molecules at a very small scale, leading to an unprecedented understanding over several aspects of the matter and a whole knowledge on its fundamental properties never imagined before. These nanomaterials provide innovative solutions in technological and environmental fields related to solar energy conversion, catalysis, medicine, and water treatment. Usually, these novel and enhanced characteristics that are easily found in metallic nanoparticles are related to their high surface-to-volume ratio. In this sense, silver nanoparticles have been the subject of substantial research especially for medical and health applications. For decades, people have been using colloidal silver for their own health benefits, but detailed studies on its effects in the environment have only recently begun. Initial studies demonstrated that cells and microbes are primarily affected by low levels of silver ion (Ag+) released from the nanoparticle. Due to the increasing use of silver nanoparticles in products for daily use, such as in shampoos, soaps, detergents, cosmetics, toothpastes, and medical and pharmaceutical products, there has been a major effort worldwide to assess the safety of using silver nanoparticles and to understand how these nanoparticles effectively kill several microorganisms. Silver has been considered as a potential disinfectant in many investigations due to its intense antimicrobial activity and low toxicity to mammalian cells and tissues. It is one of the most powerful natural disinfectants known, reason by which its deposition onto prosthetic device surfaces (e.g., catheters, heart valves, etc.) would be an attractive approach for preventing bacterial attachment and biofilm formation, which can lead to serious infections. Another potential application could be in food processing equipment and packaging materials, where the presence of undesirable bacteria can cause food spoilage and foodborne diseases. For this reason, an increasingly common application is the use of silver nanoparticles for antimicrobial coatings, many textiles, polymer, and biomedical devices that contain silver nanoparticles to provide protection against bacteria and fungi. Silver nanoparticles coated in the polymer matrix increase the efficiency of antimicrobial action with a controlled release of Ag+. The combination of silver with polymeric material reduces the transmission of the infectious agent. This chapter will describe nanostructured functional polymer materials containing silver nanoparticles for the generation of antimicrobial characteristics.


Functional materials Silver nanoparticles Antimicrobial Nanotechnology Green 


  1. 1.
    Jesline A, John NP, Narayanan PM, Vani C, Murugan S (2015) Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Appl Nanosci 5(2):157–162. doi: 10.1007/s13204-014-0301-x CrossRefGoogle Scholar
  2. 2.
    Abou El-Nour KMM, Aa E, Al-Warthan A, Ammar RAA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3:135–140CrossRefGoogle Scholar
  3. 3.
    Alexander JW (2009) History of the medical use of silver. Surg Infect 10(3):289–292CrossRefGoogle Scholar
  4. 4.
    Almajhdi FN, Fouad H, Khalil KA et al (2014) In-vitro anticancer and antimicrobial activities of PLGA/silver nanofiber composites prepared by electrospinning. J Mater Sci Mater Med 25:1045–1053CrossRefGoogle Scholar
  5. 5.
    Alshehri SM, Aldalbahi A, Al-Hajji AB, Chaudhary AA, Panhuis MI, Alhokbany N, Ahamad T (2016) Development of carboxymethyl cellulose-based hydrogel and nanosilver composite as antimicrobial agents for UTI pathogens. Carbohydr Polym 138:229–236CrossRefGoogle Scholar
  6. 6.
    Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innovative Food Sci Emerg Technol 3:113–126CrossRefGoogle Scholar
  7. 7.
    Archana D, Singh BK, Dutta J, Dutta PK (2015) Chitosan-PVP-nano silver oxide wound dressing: in vitro and in vivo evaluation. Int J Biol Macromol 73:49–57CrossRefGoogle Scholar
  8. 8.
    Khodashenas B, Ghorbani HR (2014) Synthesis of silver nanoparticles with different shapes. Arab J Chem,
  9. 9.
    Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10(3):339–354,
  10. 10.
    Ramalingam B, Parandhaman T, Das SK (2016) Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and pseudomonas aeruginosa. ACS Appl Mater Interfaces 8(7):4963–4976. doi: 10.1021/acsami.6b00161 CrossRefGoogle Scholar
  11. 11.
    Bansod SD, Bawaskar MS, Gade AK, Rai MK (2015) Development of shampoo, soap and ointment formulated by green synthesised silver nanoparticles functionalised with antimicrobial plants oils in veterinary dermatology: treatment and prevention strategies. Inst Eng Technol 9(4):165–171Google Scholar
  12. 12.
    Beltrán FR, Lorenzo V, de la Orden MU, Martínez-Urreaga J (2016) Effect of different mechanical recycling processes on the hydrolytic degradation of poly(l-lactic acid). Polym Degrad Stab 133:339–348CrossRefGoogle Scholar
  13. 13.
    Benn T, Cavanagh B, Hristovski K, Posner JD, Westerhoff P (2010) The release of nanosilver from consumer products used in the home. J Environ Qual 39(6):1875CrossRefGoogle Scholar
  14. 14.
    Blaser SA, Scheringer M, Macleod M, Hungerbuhler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409CrossRefGoogle Scholar
  15. 15.
    Bourlinos AB, Stassinopoulos A, Anglos D, Herrera R, Anastasiadis SH, Petridis D et al (2006) Functionalized ZnO nanoparticles with liquidlike behavior and their photoluminescence properties. Small 2:513CrossRefGoogle Scholar
  16. 16.
    Bozaci E, Akar E, Ozdogan E, Demir A, Altinisik A, Seki Y (2015) Application of carboxymethylcellulose hydrogel based silver nanocomposites on cotton fabrics for antibacterial property. Carbohydr Polym 134:128–135CrossRefGoogle Scholar
  17. 17.
    Arijit Kumar C, Ruchira C, Tarakdas B (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25(13):135101CrossRefGoogle Scholar
  18. 18.
    Racles C, Stoica I, Doroftei F, Cozan V (2011) A simple method for the preparation of colloidal polymer-supported silver nanoparticles. J Nanopart Res 13(12):6971–6980. doi: 10.1007/s11051-011-0608-4 CrossRefGoogle Scholar
  19. 19.
    Carbone M, Donia DT, Sabbatella G, Antiochia R (2016) Silver nanoparticles in polymeric matrices for fresh food packaging. J King Saud Univ Sci 28:273–279CrossRefGoogle Scholar
  20. 20.
    Cha DS, Chinnan MS (2004) Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr 44:223–237CrossRefGoogle Scholar
  21. 21.
    Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28(11):580–588CrossRefGoogle Scholar
  22. 22.
    Chau C-F, Wu S-H, Yen G-C (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18:269–280CrossRefGoogle Scholar
  23. 23.
    Chen A, Wang H, Li X (2005) One-step process to fabricate Ag-polypyrrole coaxial nanocables. Chemical Communications. Chem Commun:1863–1864. doi: 10.1039/B417744D
  24. 24.
    Choi JY, Ramachandran G, Kandlikar M (2008) The impact of toxicity testing costs on nanomaterial regulation. Environ Sci Technol 43(9):3030–3034CrossRefGoogle Scholar
  25. 25.
    McShan D, Ray PC, Yu H (2014) Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22(1):116–127,
  26. 26.
    Dai J, Bruening ML (2002) Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films. Nano Lett 2(5):497–501CrossRefGoogle Scholar
  27. 27.
    Dallas P, Virender KS, Radek Z (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interf Sci 166:119–135CrossRefGoogle Scholar
  28. 28.
    Das A, Kumar A, Patil NB, Viswanathan C, Ghosh D (2015) Preparation and characterization of silver nanoparticle loaded amorphous hydrogel of carboxymethylcellulose for infected wounds. Carbohydr Polym 130:254–261CrossRefGoogle Scholar
  29. 29.
    Davis G, Song JH (2006) Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind Crop Prod 23:147–161CrossRefGoogle Scholar
  30. 30.
    De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Med 3(2):133–149Google Scholar
  31. 31.
    de Moura MR, Mattoso LHC, Zucolotto V (2012) Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J Food Eng 109:520–524CrossRefGoogle Scholar
  32. 32.
    Deng Y, Li J, Pu Y, Chen Y, Zhao J, Tang J (2016) Ultra-fine silver nanoparticles dispersed in mono-dispersed amino functionalized poly glycidyl methacrylate based microspheres as an effective anti-bacterial agent. React Funct Polym 103:92–98CrossRefGoogle Scholar
  33. 33.
    dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, Gade A, Rai M (2014) Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci 103(7):1931–1944CrossRefGoogle Scholar
  34. 34.
    Edwards-Jones V (2009) The benefits of silver in hygiene, personal care and healthcare. Lett Appl Microbiol 49:147–152CrossRefGoogle Scholar
  35. 35.
    Egger S, Lehmann RP, Height MJ, Loessner MJ, Schuppler M (2009) Antimicrobial properties of a novel silver-silica nanocomposite material. Appl Environ Microbiol 75(9):2973–2976CrossRefGoogle Scholar
  36. 36.
    El-Rafie MH, Mohamed AA, Shaheen TI, Hebeish A (2010) Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohydr Polym 80:779–782CrossRefGoogle Scholar
  37. 37.
    Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531CrossRefGoogle Scholar
  38. 38.
    Fernández JA, Fernández-Baldo MA, Berni E, Camí G, Durán N, Raba J, Sanza MI (2016) Production of silver nanoparticles using yeasts and evaluation of theirantifungal activity against phytopathogenic fungi. Process Biochem 51:1306–1313CrossRefGoogle Scholar
  39. 39.
    Fernandez JG, Almeida CA, Fernandez-Baldo MA, Felici E, Raba J, Sanz MI (2016) Development of nitrocellulose membrane filters impregnated with different biosynthesized silver nanoparticles applied to water purification. Talanta 146:237–243CrossRefGoogle Scholar
  40. 40.
    Ferreira AR, Alves VD, Coelhoso IM (2016) Polysaccharide-based membranes in food packaging applications. Membranes 6(2):22CrossRefGoogle Scholar
  41. 41.
    Fuchs AV, Ritz S, Pütz S, Mailänder V, Landfester K, Ziener U (2013) Bioinspired phosphorylcholine containing polymer films with silver nanoparticles combuning antifouling and antibacterial properties. Biomater Sci 1:470–477CrossRefGoogle Scholar
  42. 42.
    Martínez-Castañón GA, Niño-Martínez N, Martínez-Gutierrez F, Martínez-Mendoza JR, Ruiz F (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10(8):1343–1348. doi: 10.1007/s11051-008-9428-6 CrossRefGoogle Scholar
  43. 43.
    Ghasemzadeh H, Ghanaat F (2014) Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization. J Polym Res 21:355–269CrossRefGoogle Scholar
  44. 44.
    Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9(4):244–253CrossRefGoogle Scholar
  45. 45.
    Bao H, Yu X, Xu C, Li X, Li Z, Wei D, Liu Y (2015) New toxicity mechanism of silver nanoparticles: promoting apoptosis and inhibiting proliferation. PLoS One 10(3):e0122535. doi: 10.1371/journal.pone.0122535 CrossRefGoogle Scholar
  46. 46.
    Palza H (2015) Antimicrobial polymers with metal nanoparticles. Int J Mol Sci 16(1):2099–2116. doi: 10.3390/ijms16012099 CrossRefGoogle Scholar
  47. 47.
    Hebeish A, El-Rafie MH, El-Sheikh MA, Seleem AA, El-Naggar ME (2014) Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int J Biol Macromol 65:509–515CrossRefGoogle Scholar
  48. 48.
    Hebeish A, Hashem M, El-Hady MM, Sharaf S (2013) Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydr Polym 92(1):407–413CrossRefGoogle Scholar
  49. 49.
    Hoet PH, Bruske-Hohlfeld I, Salata OV (2004) Nanoparticles – known and unknown health risks. J Nanobiotechnol 2:12CrossRefGoogle Scholar
  50. 50.
    Armentano I, Arciola CR, Fortunati E, Ferrari D, Mattioli S, Amoroso CF, Rizzo J, Kenny JM, Imbriani M, Visai L (2014) The interaction of bacteria with engineered nanostructured polymeric materials: a review. Sci World J 2014:410423. doi: 10.1155/2014/410423 CrossRefGoogle Scholar
  51. 51.
    Ijeri VS, Nair JR, Gerbaldi C, Bongiovanni RM, Penazzi N (2010) Metallopolymer capacitor in “one pot” by self-directed UV-assisted process. ACS Appl Mater Interfaces 2:3192CrossRefGoogle Scholar
  52. 52.
    Ji N, Liu C, Zhang S, Xiong L, Sun Q (2016) Elaboration and characterization of corn starch films incorporating silver nanoparticles obtained using short glucan chains. LWT- Food Sci Technol 74:311–318CrossRefGoogle Scholar
  53. 53.
    Kulthong K, Srisung S, Boonpavanitchakul K, Kangwansupamonkon W, Maniratanachote R (2010) Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part Fibre Toxicol 7:8–8. doi: 10.1186/1743-8977-7-8 CrossRefGoogle Scholar
  54. 54.
    Kavitha Sankar PC, Ramakrishnan R, Rosemary MJ (2016) Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products. Mater Sci Eng C Mater Biol Appl 61:631–637CrossRefGoogle Scholar
  55. 55.
    Khoo X, Grinstaff MW (2011) Novel infection-resistant surface coatings: a bioengineering approach. MRS Bull 36(5):357–366. doi: 10.1557/mrs.2011.66 CrossRefGoogle Scholar
  56. 56.
    Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70CrossRefGoogle Scholar
  57. 57.
    Kittler S, Greulich C, Diendorf J, Köller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–4554CrossRefGoogle Scholar
  58. 58.
    Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed Nanotechnol Biol Med 6:570–574CrossRefGoogle Scholar
  59. 59.
    Kong H, Jang J (2008) Synthesis and antimicrobial properties of novel silver/polyrhodanine nanofibers. Biomacromolecules 9:2677–2681CrossRefGoogle Scholar
  60. 60.
    Kumar R, Münstedt H (2005) Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26:2081–2088CrossRefGoogle Scholar
  61. 61.
    Kuorwel KK, Cran MJ, Sonneveld K, Miltz J, Bigger SW (2011) Antimicrobial activity of biodegradable polysaccharide and protein-based films containing active agents. J Food Sci 76(3):R90–R102CrossRefGoogle Scholar
  62. 62.
    Ge L, Li Q, Wang M, Ouyang J, Li X, Xing MMQ (2014) Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J Nanomedicine 9:2399–2407. doi: 10.2147/IJN.S55015 Google Scholar
  63. 63.
    Mpenyana-Monyatsi L, Mthombeni NH, Onyango MS, Momba MNB (2012) Cost-effective filter materials coated with silver nanoparticles for the removal of pathogenic bacteria in groundwater. Int J Environ Res Public Health 9(1):244–271. doi: 10.3390/ijerph9010244 CrossRefGoogle Scholar
  64. 64.
    Zang L, Qiu J, Yang C, Sakai E (2016) Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization. Sci Rep 6:20470. doi: 10.1038/srep20470 CrossRefGoogle Scholar
  65. 65.
    Ladj R, Bitar A, Eissa M, Mugnier Y, Le Dantec R, Fessi H, Elaissari A (2013) Individual inorganic nanoparticles: preparation, functionalization and in vitro biomedical diagnostic applications. J Mater Chem B 1:1381CrossRefGoogle Scholar
  66. 66.
    Lara HH, Ayala-Núñez NV, Ixtepan Turrent LC, Rodríguez Padilla C (2009) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26:615–621CrossRefGoogle Scholar
  67. 67.
    Llorens A, Lloret E, Picouet PA, Trbojevich R, Fernandez A (2012) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol 24:19–29CrossRefGoogle Scholar
  68. 68.
    Lohani A, Verma A, Joshi H, Yadav N, Karki N (2014) Nanotechnology-based cosmeceuticals. ISRN Dermatol 2014:843687CrossRefGoogle Scholar
  69. 69.
    Lombi E, Donner E, Scheckel KG, Sekine R, Lorenz C, Goetz NV, Nowack B (2014) Silver speciation and release in commercial antimicrobial textiles as influenced by washing. Chemosphere 111:352–358CrossRefGoogle Scholar
  70. 70.
    Luong ND, Lee Y, Nam J-D (2008) Highly-loaded silver nanoparticles in ultrafine cellulose acetate nanofibrillar aerogel. Eur Polym J 44:3116–3121CrossRefGoogle Scholar
  71. 71.
    Sabri MA, Umer A, Awan GH, Hassan MF, Hasnain A (2016) Selection of suitable biological method for the synthesis of silver nanoparticles. Nanomater Nanotechnol 6:29. doi: 10.5772/62644 CrossRefGoogle Scholar
  72. 72.
    Basuny M, Ali IO, El-Gawad AA, Bakr MF, Salama TM (2015) A fast green synthesis of Ag nanoparticles in carboxymethyl cellulose (CMC) through UV irradiation technique for antibacterial applications. J Sol-Gel Sci Technol 75(3):530–540. doi: 10.1007/s10971-015-3723-3 CrossRefGoogle Scholar
  73. 73.
    Carbone M, Donia DT, Sabbatella G, Antiochia R (2016) Silver nanoparticles in polymeric matrices for fresh food packaging. J King Saud UnivSci 28(4):273–279,
  74. 74.
    Chen M, Yang Z, Wu H, Pan X, Xie X, Wu C (2011) Antimicrobial activity and the mechanism of silver nanoparticle thermosensitive gel. Int J Nanomedicine 6:2873–2877. doi: 10.2147/IJN.S23945 Google Scholar
  75. 75.
    Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 8(1):37–45,
  76. 76.
    Lopez-Heras M, Theodorou IG, Leo BF, Ryan MP, Porter AE (2015) Towards understanding the antibacterial activity of Ag nanoparticles: electron microscopy in the analysis of the materials-biology interface in the lung. Environ Sci Nano 2(4):312–326. doi: 10.1039/C5EN00051C CrossRefGoogle Scholar
  77. 77.
    Mollick MMR, Rana S, Dash SK, Chattopadhyay S, Bhowmick B, Maity D, Mondal D, Pattanayak S, Roy S, Chakraborty M, Chattopadhyay D (2015) Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arab J Chem,
  78. 78.
    Starowicz M, Stypuła B, Banaś J (2006) Electrochemical synthesis of silver nanoparticles. Electrochem Commun 8(2):227–230,
  79. 79.
    Tejamaya M, Römer I, Merrifield RC, Lead JR (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46(13):7011–7017. doi: 10.1021/es2038596 CrossRefGoogle Scholar
  80. 80.
    Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71(11):7589–7593CrossRefGoogle Scholar
  81. 81.
    Malhotra B, Keshwani A, Kharkwal H (2015) Antimicrobial food packaging: potential and pitfalls. Front Microbiol 6:611CrossRefGoogle Scholar
  82. 82.
    Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551CrossRefGoogle Scholar
  83. 83.
    Mastromatteo M, Conte A, Del Nobile MA (2010) Combined use of modified atmosphere packaging and natural compounds for food preservation. Food Eng Rev 2:28–38CrossRefGoogle Scholar
  84. 84.
    Melaiye A, Sun Z, Hindi K, Milsted A, Ely D, Reneker DH et al (2005) Silver(I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J Am Chem Soc 127:2285CrossRefGoogle Scholar
  85. 85.
    Miller KP, Wang L, Benicewicz BC, Decho AW (2015) Inorganic nanoparticles engineered to attack bacteria. Chem Soc Rev 44:7787–7807CrossRefGoogle Scholar
  86. 86.
    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRefGoogle Scholar
  87. 87.
    Muffly TM, Tizzano AP, Walters MD (2011) The history and evolution of sutures in pelvic surgery. J R Soc Med 104(3):107–112CrossRefGoogle Scholar
  88. 88.
    Bastús NG, Merkoçi F, Piella J, Puntes V (2014) Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: kinetic control and catalytic properties. Chem Mater 26(9):2836–2846. doi: 10.1021/cm500316k CrossRefGoogle Scholar
  89. 89.
    Nhi TT, Khon HC, Hoai NT, Bao BC, Quyen TN, Van Toi V, Hiep NT (2016) Fabrication of electrospun polycaprolactone coated withchitosan-silver nanoparticles membranes for wound dressing applications. J Mater Sci Mater Med 27(10):156CrossRefGoogle Scholar
  90. 90.
    Yeshchenko OA, Dmitruk IM, Alexeenko AA, Kotko AV, Verdal J, Pinchuk AO (2012) Size and temperature effects on the surface plasmon resonance in silver nanoparticles. Plasmonics 7(4):685–694. doi: 10.1007/s11468-012-9359-z CrossRefGoogle Scholar
  91. 91.
    Rivero PJ, Urrutia A, Goicoechea J, Arregui FJ (2015) Nanomaterials for functional textiles and fibers. Nanoscale Res Lett 10:501. doi: 10.1186/s11671-015-1195-6 CrossRefGoogle Scholar
  92. 92.
    Fu PP, Xia Q, Hwang H-M, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22(1):64–75,
  93. 93.
    Van Dong P, Ha CH, Binh LT, Kasbohm J (2012) Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int Nano Lett 2(1):9. doi: 10.1186/2228-5326-2-9 CrossRefGoogle Scholar
  94. 94.
    Palza H (2015) Antimicrobial polymers with metal nanoparticles. Int J Mol Sci 16:2099–2116CrossRefGoogle Scholar
  95. 95.
    Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A (2008) Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19(24):245705. doi: 10.1088/0957-4484/19/24/245705 CrossRefGoogle Scholar
  96. 96.
    Piperigkou Z, Karamanou K, Engin AB, Gialeli C, Docea AO, Vynios DH, Pavao MS, Golokhvast KS, Shtilman MI, Argiris A, Shishatskaya E, Tsatsakis AM (2016) Emerging aspects of nanotoxicology in health and disease: from agriculture and food sector to cancer therapeutics. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 91:42–57CrossRefGoogle Scholar
  97. 97.
    Praveena SM, Aris AZ (2015) Application of low-cost materials coated with silver nanoparticle as water filter in Escherichia coli removal. Water Qual Expo Health 7(4):617–625CrossRefGoogle Scholar
  98. 98.
    Pulit-Prociak J, Banach M (2016) Silver nanoparticles – a material of the future…? Open Chem 14:76CrossRefGoogle Scholar
  99. 99.
    Guo Q, Ghadiri R, Weigel T, Aumann A, Gurevich LE, Esen C, Medenbach O, Cheng W, Chichkov B, Ostendorf A (2014) Comparison of in situ and ex situ methods for synthesis of two-photon polymerization polymer nanocomposites. Polymers 6(7):2037–2050. doi: 10.3390/polym6072037 CrossRefGoogle Scholar
  100. 100.
    Behra R, Sigg L, Clift MJD, Herzog F, Minghetti M, Johnston B, Petri-Fink A, Rothen-Rutishauser B (2013) Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. J R Soc Interface 10(87):20130396. doi: 10.1098/rsif.2013.0396 CrossRefGoogle Scholar
  101. 101.
    Ladj R, Bitar A, Eissa M, Mugnier Y, Le Dantec R, Fessi H, Elaissari A (2013) Individual inorganic nanoparticles: preparation, functionalization and in vitro biomedical diagnostic applications. J Mater Chem B 1(10):1381–1396. doi: 10.1039/C2TB00301E CrossRefGoogle Scholar
  102. 102.
    Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83CrossRefGoogle Scholar
  103. 103.
    Ravindra S, Murali Mohan Y, Narayana Reddy N, Mohana Raju K (2010) Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “green approach”. Colloids Surf A Physicochem Eng Asp 367:31–40CrossRefGoogle Scholar
  104. 104.
    Reidy B, Haase A, Luch A, Dawson K, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6:2295–2350CrossRefGoogle Scholar
  105. 105.
    Richards MJ, Edwards JR, Culver RP (1999) Nasocomial infections in medical intensive care units in the United States. National nosocomial infections surveillance system. Crit Care Med 27:887–892CrossRefGoogle Scholar
  106. 106.
    Ayatollahi Mousavi SA, Salari S, Hadizadeh S (2016) Evaluation of antifungal effect of silver nanoparticles against Microsporum canis, Trichophyton mentagrophytes and Microsporum gypseum. Iran J Biotechnol 13(4):38–42. doi: 10.15171/ijb.1302 CrossRefGoogle Scholar
  107. 107.
    Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4(8):3974–3983. doi: 10.1039/C3RA44507K CrossRefGoogle Scholar
  108. 108.
    Yang SK, Li MY, Zhu X, Xu GQ, Wu JH (2015) Photochemical synthesis of hierarchical multiple-growth-hillock superstructures of silver nanoparticles on ZnO. J Phys Chem C 119(25):14312–14318. doi: 10.1021/acs.jpcc.5b03521 Google Scholar
  109. 109.
    Lin S, Cheng Y, Liu J, Wiesner MR (2012) Polymeric coatings on silver nanoparticles hinder autoaggregation but enhance attachment to uncoated surfaces. Langmuir 28(9):4178–4186. doi: 10.1021/la202884f CrossRefGoogle Scholar
  110. 110.
    Praveena SM, Aris AZ (2015) Application of low-cost materials coated with silver nanoparticle as water filter in Escherichia coli removal. Water Qual Expo Health 7(4):617–625. doi: 10.1007/s12403-015-0167-5 CrossRefGoogle Scholar
  111. 111.
    Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720CrossRefGoogle Scholar
  112. 112.
    Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):32. doi: 10.1186/2228-5326-2-32 CrossRefGoogle Scholar
  113. 113.
    Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545CrossRefGoogle Scholar
  114. 114.
    Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353CrossRefGoogle Scholar
  115. 115.
    Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182CrossRefGoogle Scholar
  116. 116.
    Suran M (2014) A little hard to swallow? The use of nanotechnology in the food industry might be both boon and bane to human health. EMBO Rep 15(6):638–641Google Scholar
  117. 117.
    Abdul Kareem T, Anu Kaliani A (2011) Synthesis and thermal study of octahedral silver nano-plates in polyvinyl alcohol (PVA). Arab J Chem 4(3):325–331,
  118. 118.
    Tamoyo L, Azócar M, Kogan M, Riveros A, Páez M (2016) Copper-polymer nanocomposites: An excellent and cost-effective biocide for use on antibacterial surfaces. Mater Sci Eng C 69:1391–1409CrossRefGoogle Scholar
  119. 119.
    Tankhiwale R, Bajpai SK (2009) Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material. Colloids Surf B Biointerfaces 69:164–168CrossRefGoogle Scholar
  120. 120.
    Thomas V, Yallapu MM, Sreedhar B, Bajpai SK (2007) A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. J Colloid Int Sci 315:389–395CrossRefGoogle Scholar
  121. 121.
    Tulve NS, Stefaniak AB, Vance ME, Rogers K, Mwilu S, LeBouf RF, Schwegler-Berry D, Willis R, Thomas TA, Marr LC (2015) Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children’s potential exposures. Int J Hyg Environ Health 218(3):345–357CrossRefGoogle Scholar
  122. 122.
    Chumachenko V, Kutsevol N, Rawiso M, Schmutz M, Blanck C (2014) In situ formation of silver nanoparticles in linear and branched polyelectrolyte matrices using various reducing agents. Nanoscale Res Lett 9(1):164–164. doi: 10.1186/1556-276X-9-164 CrossRefGoogle Scholar
  123. 123.
    Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. Int J Pharm Bio Sci 2(4):282–289. doi: 10.4103/0975-7406.72127 Google Scholar
  124. 124.
    Velazquez-Velazquez JL, Santos-Flores A, Araujo-Melendez J, Sanchez-Sanchez R, Velasquillo C, Gonzalez C, Martinez-Castanon G, Martinez-Gutierrez F (2015) Anti-biofilm and cytotoxicity activity of impregnated dressings with silver nanoparticles. Mater Sci Eng C 49:604–611CrossRefGoogle Scholar
  125. 125.
    Velmurugan P, Lee SM, Cho M, Park JH, Seo SK, Myung H, Bang KS, Oh BT (2014) Antibacterial activity of silver nanoparticle-coated fabric and leather against odor and skin infection causing bacteria. Appl Microbiol Biotechnol 98(19):8179–8189CrossRefGoogle Scholar
  126. 126.
    Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74(7):2171–2178. doi: 10.1128/AEM.02001-07 CrossRefGoogle Scholar
  127. 127.
    Walser T, Demou E, Lang DJ, Hellweg S (2011) Prospective environmental life cycle assessment of nanosilver T-shirts. Environ Sci Technol 45:4570–4578CrossRefGoogle Scholar
  128. 128.
    Wang YP, Li XG, Fu T, Wang L, Turner NC, Siddique KHM, Li F-M (2016) Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China. Agric For Meteorol 228-229:42–51CrossRefGoogle Scholar
  129. 129.
    White RJ (2001) An historical overview of the use of silver in wound management. Br J Community Nurs 6(1):4–8CrossRefGoogle Scholar
  130. 130.
    Wu J, Zheng Y, Wen X, Lin Q, Chen X, Wu Z (2014) Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo. Biomed Mater 9(3):035005CrossRefGoogle Scholar
  131. 131.
    Wuithschick M, Paul B, Bienert R, Sarfraz A, Vainio U, Sztucki M, Kraehnert R, Strasser P, Rademann K, Emmerling F, Polte J (2013) Size-controlled synthesis of colloidal silver nanoparticles based on mechanistic understanding. Chem Mater 25:4679–4689CrossRefGoogle Scholar
  132. 132.
    Xu Z, Mahalingam S, Rohn JL et al (2015) Physio-chemical and antibacterial characteristics of pressure spun nylon nanofibres embedded with functional silver nanoparticles. Mater Sci Eng C 56:195–204CrossRefGoogle Scholar
  133. 133.
    Xue C-H, Chen J, Yin W, Jia S-T, Ma J-Z (2012) Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl Surf Sci 258:2468–2472CrossRefGoogle Scholar
  134. 134.
    He Y, Ingudam S, Reed S, Gehring A, Strobaugh TP, Irwin P (2016) Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J Nanobiotechnol 14(1):54. doi: 10.1186/s12951-016-0202-0 CrossRefGoogle Scholar
  135. 135.
    Soliman YS (2014) Gamma-radiation induced synthesis of silver nanoparticles in gelatin and its application for radiotherapy dose measurements. Radiat Phys Chem 102:60–67. CrossRefGoogle Scholar
  136. 136.
    Youssef AM, Abdel-Aziz MS, El-Sayed SM (2014) Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus Subtilis as packaging materials. Int J Biol Macromol 69:185–191CrossRefGoogle Scholar
  137. 137.
    Zapata PA, Larrea M, Tamayo L, Rabagliati FM, Az´ocar M, P´aez M (2016) Polyethylene/silver-nanofiber composites: a material for antibacterial films. Mater Sci Eng C. doi: 10.1016/j.msec.2016.08.039.
  138. 138.
    Zhang L, Shen Y, Xie A, Li S, Jin B, Zhang B (2006) One-step synthesis of monodisperse silver nanoparticles beneath vitamin E Langmuir monolayers. J Phys Chem B 110:6615CrossRefGoogle Scholar
  139. 139.
    Ziabka M, Mertas A, Krol W, Bobrowski A, Chlopek J (2013) High density polyethylene containing antibacterial silver nanoparticles for medical applications. Macromol Sym 315:218–225CrossRefGoogle Scholar
  140. 140.
    Chatterjee AK, Sarkar RK, Chattopadhyay AP, Aich P, Chakraborty R, Basu T (2012) A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology 23:1–11CrossRefGoogle Scholar
  141. 141.
    Tran QH, Nguyenm VQ, Le AT (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol 4:033001. doi: 10.1088/2043-6262/4/3/033001 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Luiz Fernando Gorup
    • 1
    Email author
  • Francisco N. Souza Neto
    • 1
  • Andressa M. Kubo
    • 1
  • José Antonio Santos Souza
    • 2
  • Renan Aparecido Fernandes
    • 2
  • Gabriela Lopes Fernandes
    • 2
  • Douglas Roberto Monteiro
    • 3
    • 4
  • Debora Barros Barbosa
    • 2
  • Emerson Rodrigues Camargo
    • 1
  1. 1.LIEC – Laboratório Interdisciplinar de Eletroquímica e Cerâmica, Department of Chemistry, UFSCar-FederalUniversity of São CarlosSão CarlosBrazil
  2. 2.Department of Dental Materials and ProsthodonticsAraçatuba Dental School, UNESP – Univ Estadual PaulistaAraçatubaBrazil
  3. 3.Department of Pediatric Dentistry and Public HealthAraçatuba Dental School, UNESP – Univ Estadual PaulistaAraçatubaBrazil
  4. 4.Department of ProsthodonticsUniversity of Western São Paulo (UNOESTE)Presidente PrudenteBrazil

Personalised recommendations