Skip to main content

Electrochemistry: A Powerful Tool for Preparation of Semiconductor Materials for Decontamination of Organic and Inorganic Pollutants, Disinfection, and CO 2 Reduction

  • Chapter
  • First Online:
Recent Advances in Complex Functional Materials

Abstract

This chapter highlights the importance of electrochemistry in the preparation of self-organized one-dimensional (1D) nanostructures, such as TiO2 nanotube layers, WO3 nanotubes, and Cu2O nanoparticles. The deposition of metal nanoparticles using simple electrochemical processes or the simple electrochemical oxidation of a metallic substrate under a specific set of environmental conditions is also described. The main applications of the catalysts developed via electrochemical processes are exemplified for diverse applications including the decontamination of organic contaminants, disinfection of bacteria, reduction of CO2, and nitrogen compounds such as nitrite and nitrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lieber CM (1998) One-dimensional nanostructures: chemistry, physics & applications. Solid State Commun 107:607–616. doi:10.1016/S0038-1098(98)00209-9

    Article  Google Scholar 

  2. Khudhair D, Bhatti A, Li Y et al (2016) Anodization parameters influencing the morphology and electrical properties of TiO2 nanotubes for living cell interfacing and investigations. Mater Sci Eng C Mater Biol Appl 59:1125–1142. doi:10.1016/j.msec.2015.10.042

    Article  Google Scholar 

  3. Riboni F, Nguyen NT, So S, Schmuki P (2016) Aligned metal oxide nanotube arrays: key-aspects of anodic TiO2 nanotube formation and properties. Nanoscale Horiz. doi:10.1039/C6NH00054A

    Google Scholar 

  4. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. doi:10.1038/354056a0

    Article  Google Scholar 

  5. Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220–222. doi:10.1038/358220a0

    Article  Google Scholar 

  6. Spahr ME, Stoschitzki Bitterli P, Nesper R et al (1999) Vanadium oxide nanotubes. A new nanostructured redox-active material for the electrochemical insertion of lithium. J Electrochem Soc 146:2780. doi:10.1149/1.1392008

    Article  Google Scholar 

  7. Krumeich F, Muhr H-J, Niederberger M et al (1999) Morphology and topochemical reactions of novel vanadium oxide nanotubes. J Am Chem Soc 121:8324–8331. doi:10.1021/ja991085a

    Article  Google Scholar 

  8. Remškar M, Škraba Z, Stadelmann P, Lévy F (2000) Structural stabilization of new compounds: MoS2 and WS2 micro- and nanotubes alloyed with gold and silver. Adv Mater 12:814–818. doi: 10.1002/(SICI)1521-4095(200006)12:11<814::AID-ADMA814>3.0.CO;2-0

    Google Scholar 

  9. Kasuga T, Hiramatsu M, Hoson A et al (1998) Formation of titanium oxide nanotube. Langmuir 14:3160–3163. doi:10.1021/la9713816

    Article  Google Scholar 

  10. Wang W, Varghese OK, Paulose M et al (2004) A study on the growth and structure of titania nanotubes. J Mater Res 19:417–422. doi:10.1557/jmr.2004.19.2.417

    Article  Google Scholar 

  11. Hoyer P (1996) Formation of a titanium dioxide nanotube array. Langmuir 12:1411–1413. doi:10.1021/la9507803

    Article  Google Scholar 

  12. Sander MS, Côté MJ, Gu W et al (2004) Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates. Adv Mater 16:2052–2057. doi:10.1002/adma.200400446

    Article  Google Scholar 

  13. Xie S, Zhang Q, Liu G et al (2016) Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chem Commun 52:35–59. doi:10.1039/C5CC07613G

    Article  Google Scholar 

  14. Loget G, Yoo JE, Mazare A et al (2015) Highly controlled coating of biomimetic polydopamine in TiO2 nanotubes. Electrochem Commun 52:41–44. doi:10.1016/j.elecom.2015.01.011

    Article  Google Scholar 

  15. Rummel T (1936) Uber Wachstum und Aufbau elektrolytisch erzeugter Aluminiumoxydschichten. Z Phys 99:518–551

    Article  Google Scholar 

  16. Thompson GE, Wood GC (1983) Treatise on materials science and technology, 1st edn. Academic Press, New York

    Google Scholar 

  17. Mohapatra SK, Misra M, Mahajan VK, Raja KS (2007) A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water. J Catal 246:362–369. doi:10.1016/j.jcat.2006.12.020

    Article  Google Scholar 

  18. Lee C-Y, Wang L, Kado Y et al (2014) Anodic nanotubular/porous hematite photoanode for solar water splitting: substantial effect of iron substrate purity. ChemSusChem 7:934–940. doi:10.1002/cssc.201300603

    Article  Google Scholar 

  19. Lee C-Y, Wang L, Kado Y et al (2013) Si-doped Fe2O3 nanotubular/nanoporous layers for enhanced photoelectrochemical water splitting. Electrochem Commun. doi:10.1016/j.elecom.2013.07.024

    Google Scholar 

  20. Yang Y, Albu SP, Kim D, Schmuki P (2011) Enabling the anodic growth of highly ordered V2O5 nanoporous/nanotubular structures. Angew Chem Int Ed 50:9071–9075. doi:10.1002/anie.201104029

    Article  Google Scholar 

  21. Li W, Li J, Wang X et al (2010) Visible light photoelectrochemical responsiveness of self-organized nanoporous WO3 films. Electrochim Acta 56:620–625. doi:10.1016/j.electacta.2010.06.025

    Article  Google Scholar 

  22. Lee K, Mazare A, Schmuki P (2014) One-dimensional titanium dioxide nanomaterials: nanotubes. Chem Rev 114:9385–9454. doi:10.1021/cr500061m

    Article  Google Scholar 

  23. Beranek R, Hildebrand H, Schmuki P (2003) Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem Solid-State Lett 6:B12. doi:10.1149/1.1545192

    Article  Google Scholar 

  24. Wei W, Berger S, Hauser C et al (2010) Transition of TiO2 nanotubes to nanopores for electrolytes with very low water contents. Electrochem Commun. doi:10.1016/j.elecom.2010.06.014

    Google Scholar 

  25. Yasuda K, Ghicov A, Nohira T et al (2008) Preparation of organized Ti nanorods by successive electrochemical processes in aqueous solution and molten salt. Electrochem Solid-State Lett 11:C51. doi:10.1149/1.2943666

    Article  Google Scholar 

  26. Ali G, Chen C, Yoo S et al (2011) Fabrication of complete titania nanoporous structures via electrochemical anodization of Ti. Nanoscale Res Lett 6:332. doi:10.1186/1556-276X-6-332

    Article  Google Scholar 

  27. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740. doi:10.1038/353737a0

    Article  Google Scholar 

  28. What is Anodizing? – Aluminum Anodizers Council. Aluminun Anodizers Council 1 (2016). Available at:http://www.anodizing.org/?page=what_is_anodizing.

  29. Anodizing Services, Anodizing Vancouver | Altech Anodizing. Altech Anodizing 1 (2011). Available at:http://www.altechanodizing.com/home/anodizing/.

  30. Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed Eng 50:2904–2939. doi:10.1002/anie.201001374

    Article  Google Scholar 

  31. Cardoso JC, Zanoni MVB (2010) Structural effects of nanotubes, nanowires, and nanoporous Ti/TiO2 electrodes on photoelectrocatalytic oxidation of 4,4-oxydianiline. Sep Sci Technol 45:1628–1636. doi:10.1080/01496395.2010.487721

    Article  Google Scholar 

  32. Paulose M, Prakasam HE, Varghese OK et al (2007) TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: phenol red diffusion. J Phys Chem C 111:14992–14997. doi:10.1021/jp075258r

    Article  Google Scholar 

  33. Gong D, Grimes CA, Varghese OK et al (2001) Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 16:3331–3334. doi:10.1557/JMR.2001.0457

    Article  Google Scholar 

  34. Sounart TL, Liu J, Voigt JA et al (2006) Sequential nucleation and growth of complex nanostructured films. Adv Funct Mater 16:335–344. doi:10.1002/adfm.200500468

    Article  Google Scholar 

  35. Zwilling V, Darque-Ceretti E, Boutry-Forveille A et al (1999) Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal 27:629–637. doi:10.1002/(SICI)1096-9918(199907)27:7<629::AID-SIA551>3.0.CO;2-0

    Article  Google Scholar 

  36. Macak JM, Sirotna K, Schmuki P (2005) Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochim Acta 50:3679–3684. doi:10.1016/j.electacta.2005.01.014

    Article  Google Scholar 

  37. Macak JM, Hildebrand H, Marten-Jahns U, Schmuki P (2008) Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. J Electroanal Chem 621:254–266. doi:10.1016/j.jelechem.2008.01.005

    Article  Google Scholar 

  38. Wang X, Zhao J, Kang Y et al (2014) Photoelectrochemical properties of Fe-doped TiO2 nanotube arrays fabricated by anodization. J Appl Electrochem 44:1–4. doi:10.1007/s10800-013-0617-3

    Article  Google Scholar 

  39. Yang B, Uchida M, Kim H-M et al (2004) Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 25:1003–1010. doi:10.1016/S0142-9612(03)00626-4

    Article  Google Scholar 

  40. Macak JM, Tsuchiya H, Taveira L et al (2005) Smooth anodic TiO2 nanotubes. Angew Chem Int Ed Eng 44:7463–7465. doi:10.1002/anie.200502781

    Article  Google Scholar 

  41. Sul YT, Johansson CB, Jeong Y, Albrektsson T (2001) The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys 23:329–346

    Article  Google Scholar 

  42. Choi J, Wehrspohn RB, Lee J, Gösele U (2004) Anodization of nanoimprinted titanium: a comparison with formation of porous alumina. Electrochim Acta 49:2645–2652. doi:10.1016/j.electacta.2004.02.015

    Article  Google Scholar 

  43. Zhang G, Huang H, Zhang Y et al (2007) Highly ordered nanoporous TiO2 and its photocatalytic properties. Electrochem Commun. doi:10.1016/j.elecom.2007.10.014

    Google Scholar 

  44. Cai Q, Paulose M, Varghese OK, Grimes CA (2005) The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J Mater Res 20:230–236. doi:10.1557/JMR.2005.0020

    Article  Google Scholar 

  45. Kumar K-NP, Fray DJ, Nair J et al (2007) Enhanced anatase-to-rutile phase transformation without exaggerated particle growth in nanostructured titania–tin oxide composites. Scr Mater 57:771–774. doi:10.1016/j.scriptamat.2007.06.039

    Article  Google Scholar 

  46. Mohamed AER, Kasemphaibulsuk N, Rohani S, Barghi S (2010) Fabrication of titania nanotube arrays in viscous electrolytes. J Nanosci Nanotechnol 10:1998–2008

    Article  Google Scholar 

  47. Ge Y, Zhu W, Liu X, Liu S (2012) Electrochemical fabrication of titania nanotube arrays with tunning nature of dimethyl sulfoxide and its application for hydrogen sensing. J Nanosci Nanotechnol 12:3026–3034

    Article  Google Scholar 

  48. Smith Y, Ray R, Carlson K et al (2013) Self-ordered titanium dioxide nanotube arrays: anodic synthesis and their photo/electro-catalytic applications. Mater 6:2892–2957. doi:10.3390/ma6072892

    Article  Google Scholar 

  49. Yashwanth, IVS, Gurrappa I (2014) Synthesis and characterization of titania nanotubes on titanium alloy IMI 834 by electrochemical anodization process. J Nanomater Mol Nanotechnol. doi:10.4172/2324-8777.1000141

    Google Scholar 

  50. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344. doi:10.1038/35104607

    Article  Google Scholar 

  51. Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A Chem 164:3–14. doi:10.1016/j.jphotochem.2004.02.023

    Article  Google Scholar 

  52. Mor GK, Carvalho MA, Varghese OK et al (2004) A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J Mater Res 19:628–634. doi:10.1557/jmr.2004.19.2.628

    Article  Google Scholar 

  53. Biancardo M, Argazzi R, Bignozzi CA (2005) Solid-state photochromic device based on nanocrystalline TiO2 functionalized with electron donor − acceptor species. Inorg Chem 44:9619–9621. doi:10.1021/ic0514593

    Article  Google Scholar 

  54. Ohko Y, Tatsuma T, Fujii T et al (2003) Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nat Mater 2:29–31. doi:10.1038/nmat796

    Article  Google Scholar 

  55. Bozzi A, Yuranova T, Kiwi J (2005) Self-cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature. J Photochem Photobiol A Chem 172:27–34. doi:10.1016/j.jphotochem.2004.11.010

    Article  Google Scholar 

  56. Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys Part 1-Regul Pap Brief Commun Rev Pap 44:8269–8285. doi:10.1143/jjap.44.8269

    Article  Google Scholar 

  57. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C: Photochem Rev 13:169–189. doi:10.1016/j.jphotochemrev.2012.06.001

    Article  Google Scholar 

  58. Rajeshwar K, Osugi ME, Chanmanee W et al (2008) Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J Photochem Photobiol C: Photochem Rev 9:171–192. doi:10.1016/j.jphotochemrev.2008.09.001

    Article  Google Scholar 

  59. Paramasivam I, Jha H, Liu N, Schmuki P (2012) A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. Small (Weinheim an der Bergstrasse, Germany) 8:3073–3103. doi:10.1002/smll.201200564

    Article  Google Scholar 

  60. Bessegato GG, Guaraldo TT, de Brito JF et al (2015) Achievements and trends in photoelectrocatalysis: from environmental to energy applications. Electrocatalysis 6:415–441. doi:10.1007/s12678-015-0259-9

    Article  Google Scholar 

  61. Bessegato GG, Guaraldo TT, Zanoni MVB (2014) Enhancement of photoelectrocatalysis efficiency by using nanostructured electrodes. In: Aliofkhazraei M (ed) Modern electrochemical methods in nano, surface and corrosion science. InTech, Rijeka, pp 271–319

    Google Scholar 

  62. Egerton TA (2011) Does photoelectrocatalysis by TiO2 work? J Chem Technol Biotechnol 86:1024–1031. doi:10.1002/jctb.2616

    Article  Google Scholar 

  63. Ferraz ERA, Oliveira GAR, Grando MD et al (2013) Photoelectrocatalysis based on Ti/TiO2 nanotubes removes toxic properties of the azo dyes disperse red 1, disperse red 13 and disperse Orange 1 from aqueous chloride samples. J Environ Manag 124:108–114. doi:10.1016/j.jenvman.2013.03.033

    Article  Google Scholar 

  64. Bessegato GG, Cardoso JC, da Silva BF, Zanoni MVB (2016) Combination of photoelectrocatalysis and ozonation: a novel and powerful approach applied in acid yellow 1 mineralization. Appl Catal B Environ 180:161–168. doi:10.1016/j.apcatb.2015.06.013

    Article  Google Scholar 

  65. Paschoal FMM, Pepping G, Zanoni MVB, Anderson MA (2009) Photoelectrocatalytic removal of bromate using Ti/TiO 2 coated as a photocathode. Environ Sci Technol 43:7496–7502. doi:10.1021/es803366d

    Article  Google Scholar 

  66. Brugnera MF, Miyata M, Zocolo GJ et al (2013) A photoelectrocatalytic process that disinfects water contaminated with mycobacterium kansasii and Mycobacterium Avium. Water Res 47:6596–6605. doi:10.1016/j.watres.2013.08.027

    Article  Google Scholar 

  67. Cardoso JC, Lizier TM, Zanoni MVB (2010) Highly ordered TiO2 nanotube arrays and photoelectrocatalytic oxidation of aromatic amine. Appl Catal B Environ 99:96–102. doi:10.1016/j.apcatb.2010.06.005

    Article  Google Scholar 

  68. Grimes CA, Mor GK (2009) TiO2 nanotube arrays: synthesis, properties, and applications doi: 10.1007/978-1-4419-0068-5

  69. Nah Y-C, Paramasivam I, Schmuki P (2010) Doped TiO2 and TiO2 nanotubes: synthesis and applications. ChemPhysChem 11:2698–2713. doi:10.1002/cphc.201000276

    Article  Google Scholar 

  70. Grimes CA (2007) Synthesis and application of highly ordered arrays of TiO2 nanotubes. J Mater Chem 17:1451–1457. doi:10.1039/b701168g

    Article  Google Scholar 

  71. Bessegato GG, Cardoso JC, Zanoni MVB (2014) Enhanced photoelectrocatalytic degradation of an acid dye with boron-doped TiO2 nanotube anodes. Catal Today 240:100–106. doi:10.1016/j.cattod.2014.03.073

    Article  Google Scholar 

  72. Brugnera MF, Rajeshwar K, Cardoso JC, Zanoni MVB (2010) Bisphenol a removal from wastewater using self-organized TiO2 nanotubular array electrodes. Chemosphere 78:569–575. doi:10.1016/j.chemosphere.2009.10.058

    Article  Google Scholar 

  73. Paschoal FMM, Nuñez L, Lanza MRDV, Zanoni MVB (2013) Nitrate removal on a Cu/Cu 2 O photocathode under UV irradiation and bias potential. J Adv Oxid Technol 16:63–70

    Google Scholar 

  74. Brugnera MF, Miyata M, Zocolo GJ et al (2012) Inactivation and disposal of by-products from mycobacterium smegmatis by photoelectrocatalytic oxidation using Ti/TiO2-Ag nanotube electrodes. Electrochim Acta 85:33–41. doi:10.1016/j.electacta.2012.08.116

    Article  Google Scholar 

  75. Tahir M, Amin NS (2013) Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels. Energy Convers Manag 76:194–214. doi:10.1016/j.enconman.2013.07.046

    Article  Google Scholar 

  76. LaTempa TJ, Rani S, Bao N, Grimes CA (2012) Generation of fuel from CO2 saturated liquids using a p-Si nanowire parallel to n-TiO2 nanotube array photoelectrochemical cell. Nanoscale 4:2245–2250. doi:10.1039/c2nr00052k

    Article  Google Scholar 

  77. Lianos P (2011) Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell the concept of the photofuel cell: a review of a re-emerging research field. J Hazard Mater 185:575–590. doi:10.1016/j.jhazmat.2010.10.083

    Article  Google Scholar 

  78. Zanoni MVB, Guaraldo TT (2013) Photoelectrochemical hydrogen generation and concomitant organic dye oxidation under TiO2 nanotube. ECS Trans 50:63–70. doi:10.1149/05036.0063ecst

    Article  Google Scholar 

  79. Kakuta S, Abe T (2009) A novel example of molecular hydrogen generation from formic acid at visible-light-responsive photocatalyst. ACS Appl Mater Interfaces 1:2707–2710. doi:10.1021/am900707e

    Article  Google Scholar 

  80. Abe R (2010) Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photochem Photobiol C: Photochem Rev 11:179–209. doi:10.1016/j.jphotochemrev.2011.02.003

    Article  Google Scholar 

  81. Daghrir R, Drogui P, Robert D (2012) Photoelectrocatalytic technologies for environmental applications. J Photochem Photobiol A Chem 238:41–52. doi:10.1016/j.jphotochem.2012.04.009

    Article  Google Scholar 

  82. Zhang Y, Xiong X, Han Y et al (2012) Photoelectrocatalytic degradation of recalcitrant organic pollutants using TiO2 film electrodes: an overview. Chemosphere 88:145–154. doi:10.1016/j.chemosphere.2012.03.020

    Article  Google Scholar 

  83. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959. doi:10.1021/cr0500535

    Article  Google Scholar 

  84. Georgieva J, Valova E, Armyanov S et al (2012) Bi-component semiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organic solutes and vapours: a short review with emphasis to TiO2-WO3 photoanodes. J Hazard Mater 211:30–46. doi:10.1016/j.jhazmat.2011.11.069

    Article  Google Scholar 

  85. Sakthivel S, Shankar MV, Palanichamy M et al (2004) Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res 38:3001–3008. doi:10.1016/j.watres.2004.04.046

    Article  Google Scholar 

  86. Zhang H, Chen G, Bahnemann DW (2009) Photoelectrocatalytic materials for environmental applications. J Mater Chem 19:5089. doi:10.1039/b821991e

    Article  Google Scholar 

  87. Shankar K, Basham JI, Allam NK et al (2009) Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C 113:6327–6359. doi:10.1021/jp809385x

    Article  Google Scholar 

  88. Vinodgopal K, Hotchandani S, Kamat PV (1993) Electrochemically assisted photocatalysis: titania particulate film electrodes for photocatalytic degradation of 4-chlorophenol. J Phys Chem 97:9040–9044. doi:10.1021/j100137a033

    Article  Google Scholar 

  89. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. doi:10.1038/238037a0

    Article  Google Scholar 

  90. Stuart M, Lapworth D, Crane E, Hart A (2012) Review of risk from potential emerging contaminants in UK groundwater. Sci Total Environ 416:1–21. doi:10.1016/j.scitotenv.2011.11.072

    Article  Google Scholar 

  91. Petrie B, Barden R, Kasprzyk-Hordern B (2014) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27. doi:10.1016/j.watres.2014.08.053

    Article  Google Scholar 

  92. Richardson SD, Ternes TA (2014) Water analysis: emerging contaminants and current issues. Anal Chem 86:2813–2848. doi:10.1021/ac500508t

    Article  Google Scholar 

  93. Haque IU, Rusling JF (1993) Photodegradation of 4-chlorophenol to carbon dioxide and HCl using high surface area titanium dioxide anodes. Chemosphere 26:1301–1309. doi:10.1016/0045-6535(93)90183-6

    Article  Google Scholar 

  94. Kim DH, Anderson MA (1994) Photoelectrocatalytic degradation of formic acid using a porous titanium dioxide thin-film electrode. Environ Sci Technol 28:479–483. doi:10.1021/es00052a021

    Article  Google Scholar 

  95. Xin Y, Liu H, Han L, Zhou Y (2011) Comparative study of photocatalytic and photoelectrocatalytic properties of alachlor using different morphology TiO2/Ti photoelectrodes. J Hazard Mater 192:1812–1818. doi:10.1016/j.jhazmat.2011.07.005

    Article  Google Scholar 

  96. Mahajan V, Mohapatra S, Misra M (2008) Stability of TiO2 nanotube arrays in photoelectrochemical studies. Int J Hydrog Energy 33:5369–5374. doi:10.1016/j.ijhydene.2008.06.074

    Article  Google Scholar 

  97. Liu Z, Zhang X, Nishimoto S et al (2008) Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. J Phys Chem C 112:253–259. doi:10.1021/jp0772732

    Article  Google Scholar 

  98. Shankar K, Tep KC, Mor GK, Grimes CA (2006) An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties. J Phys D-Appl Phys 39:2361–2366. doi:10.1088/0022-3727/39/11/008

    Article  Google Scholar 

  99. Kim D, Fujimoto S, Schmuki P, Tsuchiya H (2008) Nitrogen doped anodic TiO2 nanotubes grown from nitrogen-containing Ti alloys. Electrochem Commun 10:910–913. doi:10.1016/j.elecom.2008.04.001

    Article  Google Scholar 

  100. Li S, Lin S, Liao J et al (2012) Nitrogen-doped TiO2 nanotube arrays with enhanced photoelectrochemical property. Int J Photogr 2012:1–7. doi:10.1155/2012/794207

    Google Scholar 

  101. Li J, Lu N, Quan X et al (2008) Facile method for fabricating boron-doped TiO2 nanotube array with enhanced photoelectrocatalytic properties. Ind Eng Chem Res 47:3804–3808. doi:10.1021/ie0712028

    Article  Google Scholar 

  102. Lu N, Zhao H, Li J et al (2008) Characterization of boron-doped TiO2 nanotube arrays prepared by electrochemical method and its visible light activity. Sep Purif Technol 62:668–673. doi:10.1016/j.seppur.2008.03.021

    Article  Google Scholar 

  103. Milad AMH, Minggu LJ, Kassim MB, Daud WRW (2013) Carbon doped TiO2 nanotubes photoanodes prepared by in-situ anodic oxidation of Ti-foil in acidic and organic medium with photocurrent enhancement. Ceram Int 39:3731–3739. doi:10.1016/j.ceramint.2012.10.209

    Article  Google Scholar 

  104. Krengvirat W, Sreekantan S, Mohd Noor A-F et al (2012) Carbon-incorporated TiO2 photoelectrodes prepared via rapid-anodic oxidation for efficient visible-light hydrogen generation. Int J Hydrog Energy 37:10046–10056. doi:10.1016/j.ijhydene.2012.04.004

    Article  Google Scholar 

  105. Das C, Paramasivam I, Liu N, Schmuki P (2011) Photoelectrochemical and photocatalytic activity of tungsten doped TiO2 nanotube layers in the near visible region. Electrochim Acta 56:10557–10561. doi:10.1016/j.electacta.2011.05.061

    Article  Google Scholar 

  106. Liu H, Liu G, Zhou Q (2009) Preparation and characterization of Zr doped TiO2 nanotube arrays on the titanium sheet and their enhanced photocatalytic activity. J Solid State Chem 182:3238–3242. doi:10.1016/j.jssc.2009.09.016

    Article  Google Scholar 

  107. Su Y, Zhang X, Zhou M et al (2008) Preparation of high efficient photoelectrode of N–F-codoped TiO2 nanotubes. J Photochem Photobiol A Chem 194:152–160. doi:10.1016/j.jphotochem.2007.08.002

    Article  Google Scholar 

  108. Zhou X, Peng F, Wang H et al (2011) Preparation of B, N-codoped nanotube arrays and their enhanced visible light photoelectrochemical performances. Electrochem Commun 13:121–124. doi:10.1016/j.elecom.2010.11.030

    Article  Google Scholar 

  109. Sun M, Cui X (2012) Anodically grown Si–W codoped TiO2 nanotubes and its enhanced visible light photoelectrochemical response. Electrochem Commun 20:133–136. doi:10.1016/j.elecom.2012.04.016

    Article  Google Scholar 

  110. Liu H, Liu G, Shi X (2010) N/Zr-codoped TiO2 nanotube arrays: fabrication, characterization, and enhanced photocatalytic activity. Colloids Surf A Physicochem Eng Asp 363:35–40. doi:10.1016/j.colsurfa.2010.04.010

    Article  Google Scholar 

  111. Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B 110:24287–24293. doi:10.1021/jp065659r

    Article  Google Scholar 

  112. Li J-TJ, Lin C-J, Li J-TJ, Lin Z-Q (2011) A photoelectrochemical study of CdS modified TiO2 nanotube arrays as photoanodes for cathodic protection of stainless steel. Thin Solid Films 519:5494–5502. doi:10.1016/j.tsf.2011.03.116

    Article  Google Scholar 

  113. Xie K, Sun L, Wang C et al (2010) Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition. Electrochim Acta 55:7211–7218. doi:10.1016/j.electacta.2010.07.030

    Article  Google Scholar 

  114. Xing L, Jia J, Wang Y et al (2010) Pt modified TiO2 nanotubes electrode: preparation and electrocatalytic application for methanol oxidation. Int J Hydrog Energy 35:12169–12173. doi:10.1016/j.ijhydene.2010.07.162

    Article  Google Scholar 

  115. Qin Y-H, Yang H-H, Lv R-L et al (2013) TiO2 nanotube arrays supported Pd nanoparticles for ethanol electrooxidation in alkaline media. Electrochim Acta 106:372–377. doi:10.1016/j.electacta.2013.05.067

    Article  Google Scholar 

  116. Quan X, Ruan X, Zhao H et al (2007) Photoelectrocatalytic degradation of pentachlorophenol in aqueous solution using a TiO2 nanotube film electrode. Environ pollut (Barking, Essex: 1987) 147:409–414. doi:10.1016/j.envpol.2006.05.023

    Article  Google Scholar 

  117. Quan X, Yang S, Ruan X, Zhao H (2005) Preparation of titania nanotubes and their environmental applications as electrode. Environ Sci Technol 39:3770–3775. doi:10.1021/es048684o

    Article  Google Scholar 

  118. Philippidis N, Sotiropoulos S, Efstathiou A, Poulios I (2009) Photoelectrocatalytic degradation of the insecticide imidacloprid using TiO2/Ti electrodes. J Photochem Photobiol A Chem 204:129–136. doi:10.1016/j.jphotochem.2009.03.007

    Article  Google Scholar 

  119. Fang T, Yang C, Liao L (2012) Photoelectrocatalytic degradation of high COD dipterex pesticide by using TiO2/Ni photo electrode. J Environ Sci 24:1149–1156. doi:10.1016/ S1001-0742(11)60882-6

    Article  Google Scholar 

  120. Brugnera MF, Miyata M, Zocolo GJ et al (2014) Ti/TiO2 nanotubes enhance mycobacterium fortuitum, mycobacterium chelonae and mycobacterium abscessus inactivation in water. J Chem Technol Biotechnol 89:1686–1696. doi:10.1002/jctb.4243

    Article  Google Scholar 

  121. Chang H-S, Choo K-H, Lee B, Choi S-J (2009) The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water. J Hazard Mater 172:1–12. doi:10.1016/j.jhazmat.2009.06.135

    Article  Google Scholar 

  122. Daghrir R, Drogui P, Dimboukou-Mpira A, El Khakani MA (2013) Photoelectrocatalytic degradation of carbamazepine using Ti/TiO2 nanostructured electrodes deposited by means of a pulsed laser deposition process. Chemosphere 93:2756–2766. doi:10.1016/j.chemosphere.2013.09.031

    Article  Google Scholar 

  123. Nie X, Chen J, Li G et al (2013) Synthesis and characterization of TiO2 nanotube photoanode and its application in photoelectrocatalytic degradation of model environmental pharmaceuticals. J Chem Technol Biotechnol 88:1488–1497. doi:10.1002/jctb.3992

    Article  Google Scholar 

  124. Liu H, Liu G, Fan J et al (2011) Photoelectrocatalytic degradation of 4,4′-dibromobiphenyl in aqueous solution on TiO2 and doped TiO2 nanotube arrays. Chemosphere 82:43–47. doi:10.1016/j.chemosphere.2010.10.013

    Article  Google Scholar 

  125. Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: an updated review. Appl Catal B Environ 166–167:603–643. doi:10.1016/j.apcatb.2014.11.016

    Article  Google Scholar 

  126. Martínez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B Environ 87:105–145. doi:10.1016/j.apcatb.2008.09.017

    Article  Google Scholar 

  127. Bessegato GG, Cardoso JC, Silva BF da, Zanoni MVB (2014) Enhanced photoabsorption properties of composites of Ti/TiO2 nanotubes decorated by Sb2S3 and improvement of degradation of hair dye. J Photochem Photobiol A Chem 276:96–103. doi: 10.1016/j.jphotochem.2013.12.001

  128. Malato S, Fernández-Ibáñez P, Maldonado MI et al (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59. doi:10.1016/j.cattod.2009.06.018

    Article  Google Scholar 

  129. Paschoal FMM, Anderson MA, Zanoni MVB (2009) Simultaneous removal of chromium and leather dye from simulated tannery effluent by photoelectrochemistry. J Hazard Mater 166:531–537. doi:10.1016/j.jhazmat.2008.11.058

    Article  Google Scholar 

  130. Kaneko M, Nemoto J, Ueno H et al (2006) Photoelectrochemical reaction of biomass and bio-related compounds with nanoporous TiO2 film photoanode and O2-reducing cathode. Electrochem Commun 8:336–340. doi:10.1016/j.elecom.2005.12.004

    Article  Google Scholar 

  131. Ueno H, Nemoto J, Ohnuki K et al (2009) Photoelectrochemical reaction of biomass-related compounds in a biophotochemical cell comprising a nanoporous TiO2 film photoanode and an O2-reducing cathode. J Appl Electrochem 39:1897–1905. doi:10.1007/s10800-009-9897-z

    Article  Google Scholar 

  132. Kaneko M, Ueno H, Saito R, Nemoto J (2009) Highly efficient photoelectrocatalytic decomposition of biomass compounds using a nanoporous semiconductor photoanode and an O2-reducing cathode with quantum efficiency over 100. Catal Lett 131:184–188. doi:10.1007/s10562-009-0011-2

    Article  Google Scholar 

  133. Brugnera MF, Miyata M, Fujimura Leite CQ, Zanoni MVB (2014) Silver ion release from electrodes of nanotubes of TiO2 impregnated with Ag nanoparticles applied in photoelectrocatalytic disinfection. J Photochem Photobiol A Chem 278:1–8. doi:10.1016/j.jphotochem.2013.12.020

    Article  Google Scholar 

  134. Bessegato GG, Cardoso JC, Silva BF Da, Zanoni MVB (2013) Enhanced photoabsorption properties of composites of Ti/TiO2 nanotubes decorated by Sb2S3 and improvement of degradation of hair dye. J Photochem Photobiol A Chem 276:96–103. doi: 10.1016/j.jphotochem.2013.12.001

  135. Cho M, Chung H, Choi W, Yoon J (2004) Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res 38:1069–1077. doi:10.1016/j.watres.2003.10.029

    Article  Google Scholar 

  136. García-Pérez UM, Sepúlveda-Guzmán S, Martínez-De La Cruz A (2012) Nanostructured BiVO 4 photocatalysts synthesized via a polymer-assisted coprecipitation method and their photocatalytic properties under visible-light irradiation. Solid State Sci 14:293–298. doi:10.1016/j.solidstatesciences.2011.12.008

    Article  Google Scholar 

  137. Hong X, Wang Z, Cai W et al (2005) Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. Chem Mater 17:1548–1552. doi:10.1021/cm047891k

    Article  Google Scholar 

  138. Charles Dismukes G, Brimblecombe R, Felton GAN et al (2009) Development of bioinspired Mn4O4-cubane water oxidation catalysts: lessons from photosynthesis. Acc Chem Res 42:1935–1943. doi:10.1021/ar900249x

    Article  Google Scholar 

  139. Migas DB, Shaposhnikov VL, Rodin VN, Borisenko VE (2010) Tungsten oxides. I. Effects of oxygen vacancies and doping on electronic and optical properties of different phases of WO3. J Appl Phys. doi:10.1063/1.3505688

    Google Scholar 

  140. Lv K, Li J, Qing X et al (2011) Synthesis and photo-degradation application of WO3/TiO2 hollow spheres. J Hazard Mater 189:329–335. doi:10.1016/j.jhazmat.2011.02.038

    Article  Google Scholar 

  141. Fraga LE, Anderson MA, Beatriz MLPMA et al (2009) Evaluation of the photoelectrocatalytic method for oxidizing chloride and simultaneous removal of microcystin toxins in surface waters. Electrochim Acta 54:2069–2076. doi:10.1016/j.electacta.2008.08.060

    Article  Google Scholar 

  142. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev. doi:10.1039/c3cs60378d

    Google Scholar 

  143. Zhu T, Chong MN, Chan ES (2014) Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review. ChemSusChem 7:2974–2997. doi:10.1002/cssc.201402089

    Article  Google Scholar 

  144. Saha D, Jensen KMØ, Tyrsted C et al (2014) In situ total X-ray scattering study of WO3 nanoparticle formation under hydrothermal conditions. Angew Chem Int Ed 53:3667–3670. doi:10.1002/anie.201311254

    Article  Google Scholar 

  145. Katsumata H, Inoue K, Suzuki T, Kaneco S (2014) Facile synthesis of WO3 nanorod thin films on W substrate with enhanced photocatalytic performance. Catal Lett 144:837–842. doi:10.1007/s10562-014-1194-8

    Article  Google Scholar 

  146. Ahsan M, Ahmad MZ, Tesfamichael T et al (2012) Low temperature response of nanostructured tungsten oxide thin films toward hydrogen and ethanol. Sensors Actuators B Chem 173:789–796. doi:10.1016/j.snb.2012.07.108

    Article  Google Scholar 

  147. Fraga LE, Zanoni MVB (2011) Nanoporous of W/WO 3 thin film electrode grown by electrochemical anodization applied in the photoelectrocatalytic oxidation of the basic red 51 used in hair dye. J Braz Chem Soc 22:718–725. doi:10.1590/S0103-50532011000400015

    Article  Google Scholar 

  148. Lee WH, Lai CW, Abd Hamid SB (2015) In situ anodization of WO3-decorated TiO2 nanotube arrays for efficient mercury removal. Mater 8:5702–5714. doi:10.3390/ma8095270

    Article  Google Scholar 

  149. Lai CW (2014) Photocatalysis and photoelectrochemical properties of tungsten trioxide nanostructured films. TheScientificWorldJOURNAL 2014:843587. doi:10.1155/2014/843587

    Google Scholar 

  150. Zhu T, Chong MN, Phuan YW et al (2016) Effects of electrodeposition synthesis parameters on the photoactivity of nanostructured tungsten trioxide thin films: optimisation study using response surface methodology. J Taiwan Inst Chem Eng 61:196–204. doi:10.1016/j.jtice.2015.12.010

    Article  Google Scholar 

  151. Guaraldo TT, Zanoni TB, de Torresi SIC et al (2013) On the application of nanostructured electrodes prepared by Ti/TiO2/WO3 “template”: a case study of removing toxicity of indigo using visible irradiation. Chemosphere 91:586–593. doi:10.1016/j.chemosphere.2012.12.027

    Article  Google Scholar 

  152. Guaraldo TT, Gonçales VR, Silva BF et al (2016) Hydrogen production and simultaneous photoelectrocatalytic pollutant oxidation using a TiO2/WO3 nanostructured photoanode under visible light irradiation. J Electroanal Chem 765:188–196. doi:10.1016/j.jelechem.2015.07.034

    Article  Google Scholar 

  153. Hepel M, Luo J (2001) Photoelectrochemical mineralization of textile diazo dye pollutants using nanocrystalline WO3 electrodes. Electrochim Acta 47:729–740. doi:10.1016/S0013-4686(01)00753-8

    Article  Google Scholar 

  154. Hepel MHS (2005) Photoelectrocatalytic degradation of diazo dyes on nanostructured WO3 electrodes. Electrochim Acta 50:5278–5291. doi:10.1016/j.electacta.2005.03.067

    Article  Google Scholar 

  155. Scott-Emuakpor EO, Kruth A, Todd MJ et al (2012) Remediation of 2,4-dichlorophenol contaminated water by visible light-enhanced WO 3 photoelectrocatalysis. Appl Catal B Environ 123–124:433–439. doi:10.1016/j.apcatb.2012.05.010

    Article  Google Scholar 

  156. Zheng Q, Lee C (2014) Visible light photoelectrocatalytic degradation of methyl orange using anodized nanoporous WO3. Electrochim Acta 115:140–145. doi:10.1016/j.electacta.2013.10.148

    Article  Google Scholar 

  157. Souza B (2015) Desinfecção de águas contaminadas com Candida parapsilosis utilizando eletrodos de W/WO3 em tratamento fotoeletrocatalítico. UNESP, Araraquara

    Google Scholar 

  158. Scott-emuakpor E, Paton GI, Todd MJ, Macphee DE (2016) Disinfection of E. coli contaminated water using tungsten trioxide-based photoelectrocatalysis. Environ Eng Manag J 15:273105

    Google Scholar 

  159. Zhang Z, Wang P (2012) Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J Mater Chem 22:2456. doi:10.1039/c1jm14478b

    Article  Google Scholar 

  160. Richardson TJ, Slack JL, Rubin MD (2001) Electrochromism in copper oxide thin films. Electrochim Acta 46:2281–2284. doi:10.1016/S0013-4686(01)00397-8

    Article  Google Scholar 

  161. Paracchino A, Laporte V, Sivula K et al (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10:456–461. doi:10.1038/nmat3017

    Article  Google Scholar 

  162. Ma Q-B, Hofmann JP, Litke A, Hensen EJM (2015) Cu2O photoelectrodes for solar water splitting: tuning photoelectrochemical performance by controlled faceting. Sol Energy Mater Sol Cells 141:178–186. doi:10.1016/j.solmat.2015.05.025

    Article  Google Scholar 

  163. Nakaoka K, Ueyama J, Ogura K (2004) Photoelectrochemical behavior of electrodeposited CuO and Cu 2 O thin films on conducting substrates. J Electrochem Soc 151:C661–C665. doi:10.1149/1.1789155

    Article  Google Scholar 

  164. Siegfried MJ, Choi K-S (2007) Conditions and mechanism for the anodic deposition of cupric oxide films in slightly acidic aqueous media. J Electrochem Soc 154:D674. doi:10.1149/1.2789394

    Article  Google Scholar 

  165. Lim YF, Choi JJ, Hanrath T (2012) Facile synthesis of colloidal CuO nanocrystals for light-harvesting applications. J Nanomater. doi:10.1155/2012/393160

    Google Scholar 

  166. Li D, Chien CJ, Deora S et al (2011) Prototype of a scalable core-shell Cu2O/TiO2 solar cell. Chem Phys Lett 501:446–450. doi:10.1016/j.cplett.2010.11.064

    Article  Google Scholar 

  167. Brito JF, Valnice M, Zanoni B (2016) On the application of Ti/TiO2/CuO n-p junction semiconductor: a case study of electrolyte, temperature and potential influence on CO2 reduction. Chem Eng J:15–18. doi:10.1016/j.cej.2016.08.033

  168. Slamet NHW, Purnama E et al (2005) Photocatalytic reduction of CO2 on copper-doped titania catalysts prepared by improved-impregnation method. Catal Commun 6:313–319. doi:10.1016/j.catcom.2005.01.011

    Article  Google Scholar 

  169. Anandan S, Wen X, Yang S (2005) Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Mater Chem Phys 93:35–40. doi:10.1016/j.matchemphys.2005.02.002

    Article  Google Scholar 

  170. Bouzit S, Boualy B, Firdoussi L et al (2015) Fast room temperature solution-phase approach for selective synthesis of nanostructured Cu(OH)2, Cu2O and CuO. Int Res J Pure Appl Chem 8:157–164. doi:10.9734/IRJPAC/2015/17920

    Article  Google Scholar 

  171. Golden TD, Shumsky MG, Zhou Y et al (1996) Electrochemical deposition of copper(I) oxide films. Chem Mater 8:2499–2504. doi:10.1021/cm9602095

    Article  Google Scholar 

  172. Sowers KL, Fillinger A (2009) Crystal face dependence of p-Cu2O stability as photocathode. J Electrochem Soc 156:F80. doi:10.1149/1.3089290

    Article  Google Scholar 

  173. Brito JF, Silva AA, Cavalheiro AJ, Zanoni MVB (2014) Evaluation of the parameters affecting the photoelectrocatalytic reduction of CO2 to CH3OH at Cu / Cu2O electrode. Int J Electrochem Sci 9:5961–5973

    Google Scholar 

  174. Brito JF, Araujo AR, Rajeshwar K, Zanoni MVB (2015) Photoelectrochemical reduction of CO2 on Cu/Cu2O films: product distribution and pH effects. Chem Eng J 264:302–309. doi:10.1016/j.cej.2014.11.081

    Article  Google Scholar 

  175. Yuan Y-J, Yu Z-T, Zhang J-Y, Zou Z-G (2012) A copper(i) dye-sensitised TiO2-based system for efficient light harvesting and photoconversion of CO2 into hydrocarbon fuel. Dalton Trans 41:9594. doi:10.1039/c2dt30865g

    Article  Google Scholar 

  176. Kecsenovity E, Endrodi B, Pápa Z et al (2016) Decoration of ultra-long carbon nanotubes with Cu 2 O nanocrystals: a hybrid platform for enhanced. J Mater Chem A:3139–3147. doi:10.1039/C5TA10457B

  177. de Jongh PE, Vanmaekelbergh D, Kelly JJ (2000) Photoelectrochemistry of electrodeposited Cu2O. J Electrochem Soc 147:486. doi:10.1149/1.1393221

    Article  Google Scholar 

  178. Perazolli L, Nuñez L, da Silva MRA et al (2011) TiO2/CuO films obtained by citrate precursor method for photocatalytic application. Mater Sci Appl 2:564–571. doi:10.4236/msa.2011.26075

    Google Scholar 

  179. Fan M, Bai Z, Zhang Q et al (2014) RSC advances aqueous CO2 reduction on morphology controlled CuxO nanocatalysts at low overpotential. RSC Adv 4:44583–44591. doi:10.1039/C4RA09442E

    Article  Google Scholar 

  180. Epifani M, Melissano E, Pace G, Schioppa M (2007) Precursors for the combustion synthesis of metal oxides from the sol – gel processing of metal complexes. J Eur Ceram Soc 27:115–123. doi:10.1016/j.jeurceramsoc.2006.04.084

    Article  Google Scholar 

  181. Nandanwar SU, Chakraborty M (2012) Synthesis of colloidal CuO/γ-Al2O3 by microemulsion and its catalytic reduction of aromatic nitro compounds. Chin J Catal. doi:10.1016/S1872-2067(11)60433-6

    Google Scholar 

  182. Izaki M, Nagai M, Maeda K et al (2011) Electrodeposition of 1.4-eV-bandgap p-copper (II) oxide film with excellent photoactivity. J Electrochem Soc 158:D578. doi:10.1149/1.3614408

    Article  Google Scholar 

  183. Le M, Ren M, Zhang Z et al (2011) Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. J Electrochem Soc 158:E45. doi:10.1149/1.3561636

    Article  Google Scholar 

  184. Ghadimkhani G, de Tacconi NR, Chanmanee W et al (2013) Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO-Cu2O semiconductor nanorod arrays. Chem Commun (Cambridge, England) 49:1297–1299. doi:10.1039/c2cc38068d

    Article  Google Scholar 

  185. Rajeshwar K, De Tacconi NR, Ghadimkhani G et al (2013) Tailoring copper oxide semiconductor nanorod arrays for photoelectrochemical reduction of carbon dioxide to methanol. ChemPhysChem 14:2251–2259. doi:10.1002/cphc.201300080

    Article  Google Scholar 

  186. Li P, Xu J, Jing H et al (2014) Wedged N-doped CuO with more negative conductive band and lower overpotential for high efficiency photoelectric converting CO2 to methanol. Appl Catal B Environ 156–157:134–140. doi:10.1016/j.apcatb.2014.03.011

    Article  Google Scholar 

  187. Chiang K, Amal R, Tran T (2002) Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide. Adv Environ Res 6:471–485. doi:10.1016/S1093-0191(01)00074-0

    Article  Google Scholar 

  188. Siripala W, Ivanovskaya A, Jaramillo TF et al (2003) A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis. Sol Energy Mater Sol Cells 77:229–237. doi:10.1016/S0927-0248(02)00343-4

    Article  Google Scholar 

  189. Li P, Jing H, Xu J et al (2014) High-efficiency synergistic conversion of CO2 to methanol using Fe2O3 nanotubes modified with double-layer Cu2O spheres. Nanoscale 6:11380–11386. doi:10.1039/C4NR02902J

    Article  Google Scholar 

  190. Kang U, Choi SK, Ham DJ et al (2015) Photosynthesis of formate from CO2 and water at 1% energy efficiency via copper iron oxide catalysis. Energy Environ Sci:2638–2543. doi:10.1039/C5EE01410G

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Valnice Boldrin Zanoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cardoso, J.C., Bessegato, G.G., de Brito, J.F., Souza, B.C.A., Zanoni, M.V.B. (2017). Electrochemistry: A Powerful Tool for Preparation of Semiconductor Materials for Decontamination of Organic and Inorganic Pollutants, Disinfection, and CO 2 Reduction. In: Longo, E., La Porta, F. (eds) Recent Advances in Complex Functional Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-53898-3_10

Download citation

Publish with us

Policies and ethics