Advertisement

Small Cells for Big Ideas: The Cytotoxic Podophyllotoxin and the Long Journey in Discovering Its Biosynthetic Pathway

  • Pavlina Sasheva
  • Iliana Ionkova
Chapter

Abstract

For more than 70 years the plant-derived cytotoxic podophyllotoxin is still a focal point for many research groups. The relationship between the structure of podophyllotoxin and podophyllotoxin derivatives, and their biological activity, allowed the design of novel drugs to combat malignancies. The quests for safer drugs and biomass production through aseptic cultivation have been gaining momentum in the last decade or two, supported by the advances in the computer technologies, information sharing and bioinformatics/molecular biology. The recently discovered enzymatic conversions that lead directly to etoposide aglycone not only filled the gaps in the lignan biosynthetic pathway, but also offered an exciting direction for future research. This book chapter opens with a short summary of the structure of podophyllotoxin and podophyllotoxin-based drugs, and their biological targets. Compelling discoveries and unexpected turns of the lignan biosynthetic pathway are discussed next, followed by benchmark studies in the aseptic cultivation of the plants producing it.

Keywords

Podophyllotoxin Biosynthetic pathway Etoposide Aseptic cultivation Structure-activity relationships Podophyllum Linum 

References

  1. Airi S, Rawal RS, Dhar U, Purohit AN (1997) Population studies on Podophyllum hexandrum Royle—a dwindling medicinal plant of the Himalaya. Plant Genet Resour Newslett 110:20–34Google Scholar
  2. Bahabadi SE, Sharifi M, Safaie N, Murata J, Yamagaki T, Satake H (2011) Increased lignan biosynthesis in the suspension cultures of Linum album by fungal extracts. Plant Biotechnol Rep 5(4):367–373CrossRefGoogle Scholar
  3. Bahabadi SE, Sharifi M, Behmanesh M, Safaie N, Murata J, Araki R, Yamagaki T, Satake H (2012) Time-course changes in fungal elicitor-induced lignan synthesis and expression of the relevant genes in cell cultures of Linum album. J Plant Physiol 169(5):487–491CrossRefGoogle Scholar
  4. Bahabadi SE, Sharifi M, Chashmi NA, Murata J, Satake H (2014) Significant enhancement of lignan accumulation in hairy root cultures of Linum album using biotic elicitors. Acta Physiol Plant 36:3325–3331CrossRefGoogle Scholar
  5. Baldi A, Srivastava AK, Bisaria VS (2008a) Improved podophyllotoxin production by transformed cultures of Linum album. Biotechnol J 3(9–10):1256–1263PubMedCrossRefGoogle Scholar
  6. Baldi A, Jain A, Gupta N, Srivastava AK, Bisaria VS (2008b) Co-culture of arbuscular mycorrhiza-like fungi (Piriformospora indica and Sebacina vermifera) with plant cells of Linum album for enhanced production of podophyllotoxin: a first report. Biotechnol Lett 30:1671–1677PubMedCrossRefGoogle Scholar
  7. Bayindir U, Alfermann AW, Fuss E (2008) Hinokonin biosynthesis in Linum corymbulosum Reichenb. Plant J 55:810–820PubMedCrossRefGoogle Scholar
  8. Bhadula SK, Singh A, Lata H, Kunyal CP, Purohit AN (1996) Genetic resources of Podophyllum hexandrum Royle, an endangered medicinal species from Garhwal Himalaya, India. Plant Genet Resour Newslett 106:26–29Google Scholar
  9. Bhattacharyya D, Sinha R, Ghanta S, Chakraborty A, Hazra S, Chattopadhyay S (2012) Proteins differentially expressed in elicited cell suspension culture of Podophyllum hexandrum with enhanced podophyllotoxin content. Proteome Sci 10:34PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bhattacharyya D, Sinha R, Hazra S, Datta R, Chattopadhyay S (2013) De novo transcriptome analysis using 454 pyrosequencing of the Himalayan Mayapple, Podophyllum hexandrum. BMC Genomics 14:748PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bhattacharyya D, Hazra S, Banerjee A, Datta R, Kumar D, Chakrabarti S, Chattopadhyay S (2016) Transcriptome-wide identification and characterization of CAD isoforms specific for podophyllotoxin biosynthesis from Podophyllum hexandrum. Plant Mol Biol 92(1–2):1–23PubMedCrossRefGoogle Scholar
  12. Biswas S, Hazra S, Chattopadhyay S (2016) Identification of conserved miRNAs and their putative target genes in Podophyllum hexandrum (Himalayan Mayapple). Plant Gene 6:82–89CrossRefGoogle Scholar
  13. Botta B, Monache GD, Misiti D, Vitali A, Zappia G (2001) Aryltetralin lignans: chemistry, pharmacology and biotransformations. Curr Med Chem 8:1363–1381PubMedCrossRefGoogle Scholar
  14. Broomhead AJ, Rahman MMA, Dewick PM, Jackson DE, Lucas JA (1991) Matairesinol as precursor of Podophyllum lignans. Phytochemistry 30:1489–1492CrossRefGoogle Scholar
  15. Bruschi M, Orlandi M, Rindone M, Rindone B, Saliu F, Suarez-Bertoa R, Tollpa EL, Zoia L (2010) Podophyllotoxin and antitumor synthetic aryltetralines. Toward a biomimetc preparation. In: Mukherjee A (ed) Biomimetics learning from nature. InTech, RijekaGoogle Scholar
  16. Capranico G, Tinelli S, Austin CA, Fisher ML, Zunino F (1992) Different patterns of gene expression of topoisomerase II isoforms in differentiated tissues during murine development. Biochim Biophys Acta 1132:43–48PubMedCrossRefGoogle Scholar
  17. Chashmi NA, Sharifi M, Yousefzadi M, Behmanesh M, Palazon J (2011) The production of cytotoxic lignans by hairy root cultures of Linum album. World Acad Sci Eng Technol 80:401–402Google Scholar
  18. Chattopadhyay S, Srivastava AK, Bhojwani SS, Bisaria VS (2001) Development of suspension culture of Podophyllum hexandrum for the production of podophyllotoxin. Biotechnol Lett 23:2063–2066CrossRefGoogle Scholar
  19. Chattopadhyay S, Srivastava AK, Bhojwani SS, Bisaria VS (2002) Production of podophyllotoxin by plant cell culture of Podophyllum hexandrum in bioreactor. J Biosci Bioeng 93:215–220PubMedCrossRefGoogle Scholar
  20. Chattopadhyay S, Bisaria VS, Bhojwani SS, Srivastava AK (2003) Enhanced production of podophyllotoxin by fed batch cultivation of Podophyllum hexandrum. Can J Chem Eng 81:1011–1018CrossRefGoogle Scholar
  21. Chu A, Dinkova A, Davin LB, Bedgar DL, Lewis NG (1993) Stereospecificity of (+)-pinoresinol and (+)-lariciresinol reductases from Forsythia intermedia. J Biol Chem 268:27026–27033PubMedGoogle Scholar
  22. Corbin C, Renouard S, Lopez T, Lamblin F, Laine E, Hano C (2013) Identification and characterization of cis-acting elements involved in the regulation of ABA- and/or GA-mediated LuPLR1 gene expression and lignan biosynthesis in flax (Linum usitatissimum L.) cell cultures. J Plant Physiol 170:516–522PubMedCrossRefGoogle Scholar
  23. Dalisay DS, Kim KW, Lee C, Yang H, Rubel O, Bowen BP, Davin LB, Lewis NG (2015) Secoisolariciresinol diglucoside formation and cyanogenic glucosides in flax seed: MALDI mass spectrometry imaging. J Nat Prod 78:1231–1242PubMedCrossRefGoogle Scholar
  24. Damayanthi Y, Lown JW (1998) Podophyllotoxins: current status and recent developments. Curr Med Chem 5:205–252PubMedGoogle Scholar
  25. Davin LB, Lewis NG (1995) Lignin and lignan biochemical pathways in plants: an unprecedented discovery in phenolic coupling. An Acad Bras Cienc Suppl 3(67):363–378Google Scholar
  26. Davin LB, Lewis NG (2003) An historical perspective on lignan biosynthesis: monolignol, allylphenol and hydroxycinnamic acid coupling and downstream metabolism. Phytochem Rev 2:257–288CrossRefGoogle Scholar
  27. Davin LB, Wang HW, Crowell AL, Bedgar DL, Martin DM, Sarkanen S, Lewis NG (1997) Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275:362–366PubMedCrossRefGoogle Scholar
  28. De Luca V, Salim V, Atsumi SM, Yu F (2012) Mining the biodiversity of plants: a revolution in the making. Science 336:1658–1661PubMedCrossRefGoogle Scholar
  29. Dinkova-Kostova AT, Gang DR, Davin LB, Bedgar DL, Chu A, Lewis NG (1996) (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia: protein purification, cDNA cloning, heterologous expression and comparison to isoflavone reductase. J Biol Chem 271:29473–29482PubMedCrossRefGoogle Scholar
  30. Dorleans A, Gigant B, Ravelli RBG, Mailliet P, Mikol V, Knossow M (2009) Variations in the colchicine-binding domain provide insight into the structural switch of tubulin. Proc Natl Acad Sci U S A 106(33):13775–13779PubMedPubMedCentralCrossRefGoogle Scholar
  31. Drwal MN, Marinello J, Manzo SG, Wakelin LPG, Capranico G, Griffith R (2014) Novel DNA topoisomerase IIα inhibitors from combined ligand- and structure-based virtual screening. PLoS One 9(12):e114904PubMedPubMedCentralCrossRefGoogle Scholar
  32. Farkya S, Bisaria VS (2008) Exogenous hormones affecting morphology and biosynthetic potential of hairy root line (LYR2i) of Linum album. J Biosci Bioeng 2:140–146CrossRefGoogle Scholar
  33. Federolf K, Alfermann WA, Fuss E (2007) Aryltetralin-lignan formation in two different cell suspension cultures of Linum album: deoxypodophyllotoxin 6-hydroxylase, a key enzyme for the formation of 6-methoxypodophyllotoxin. Phytochemistry 68:1397–1406PubMedCrossRefGoogle Scholar
  34. Fujii Y (1991) Podophyllum spp.: in vitro regeneration and the production of podophyllotoxin. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Springer Verlag, Berlin/HeidelbergGoogle Scholar
  35. Fujita M, Gang DR, Davin LB, Lewis NG (1999) Recombinant pinoresinol/lariciresinol reductases from western red cedar (Thuja plicata) catalyze opposite enantiospecific conversions. J Biol Chem 274:618–627PubMedCrossRefGoogle Scholar
  36. Fuss E (2003) Lignans in plant cell and organ cultures: an overview. Phytochem Rev 2:307–320CrossRefGoogle Scholar
  37. Giri A, Narasu ML (2000) Production of podophyllotoxin from Podophyllum hexandrum: a potential natural product for clinically useful anticancer drugs. Cytotechnology 34:17–26PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gordaliza M, Garcia PA, Miguel del Corral JM, Castro MA, Gomez-Zurita MA (2004) Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon 44:441–459PubMedCrossRefGoogle Scholar
  39. Halls SC, Lewis NG (2002) Secondary and quaternary structures of the (+)-pinoresinol-forming dirigent protein. Biochemistry 41:9455–9461PubMedCrossRefGoogle Scholar
  40. Hano C, Martin I, Fliniaux O, Legrand B, Gutierrez L, Arroo RRJ, Mesnard F, Lamblin F, Laine E (2006) Pinoresinol–lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds. Planta 224:1291–1301PubMedCrossRefGoogle Scholar
  41. Hartwell JL, Schrecker AW (1951) Components of podophyllin. V. The constitution of podophyllotoxin. J Am Chem Soc 73:2909–2916CrossRefGoogle Scholar
  42. Henges A (1999) Biosynthese und Kompartimentierung von Lignanen in Zellkulturen von Linum album. PhD Thesis, University of Düsseldorf, GermanyGoogle Scholar
  43. Humphreys JM, Chapple C (2002) Rewriting the lignin roadmap. Curr Opin Plant Biol 5:224–229PubMedCrossRefGoogle Scholar
  44. Huzil JT, Winter P, Johnson L, Weis AL, Bakos T, Banerjee A, Luduena RF, Damaraju S, Tuszynski JA (2010) Computational design and biological testing of highly cytotoxin colchicine ring a modifications. Chem Biol Drug Des 75:541–550CrossRefGoogle Scholar
  45. Ionkov T, Ionkova I, Sasheva P (2012) Strategy to control the production of rare anticancer substances in the endangered plant Linum linearifolium in bioreactor. Ind J Fund Appl Life Sci 2(1):170–176Google Scholar
  46. Ionkova I (2009) Effect of methyl jasmonate on production of aryltetralin lignans in hairy root cultures of Linum tauricum. Pharmacogn Res 1(3):102–105Google Scholar
  47. Ionkova I (2010) Podophyllotoxin and related lignans: biotechnological production by in vitro plant cell cultures. In: Arora R (ed) Medicinal plant biotechnology. C.A.B. International, OxfordshireGoogle Scholar
  48. Ionkova I, Fuss E (2009) Influence of different strains of Agrobacterium rhizogenes on induction of hairy roots and lignan production in Linum tauricum ssp. tauricum. Pharmacogn Res 5:14–18Google Scholar
  49. Ionkova I, Antonova I, Momekov G, Fuss E (2010) Production of podophyllotoxin in Linum linearifolium in vitro cultures. Pharmacogn Res 6(23):180–185Google Scholar
  50. Kadkade PG (1981) Formation of podophyllotoxin by Podophyllum peltatum tissue cultures. Naturwissenschaften 68:481–482PubMedCrossRefGoogle Scholar
  51. Kadkade PG (1982) Growth and podophyllotoxin production in callus tissues of Podophyllum peltatum. Plant Sci Lett 25:107–115CrossRefGoogle Scholar
  52. Kaplan IW (1942) Condylomata acuminata. New Orleans Med Surg J 94:388–390Google Scholar
  53. Katayama T, Davin LB, Chu A, Lewis NG (1993) Novel benzylic ether reductions in lignan biogenesis in Forsythia intermedia. Phytochemistry 33:581–591CrossRefGoogle Scholar
  54. Kim MK, Jeon JH, Fujita M, Davin LB, Lewis NG (2002) The western red cedar (Thuja plicata) 8-8′ DIRIGENT family displays diverse expression patterns and conserved monolignol coupling specificity. Plant Mol Biol 49:199–214PubMedCrossRefGoogle Scholar
  55. Kim HJ, Ono E, Morimoto K, Yamagaki T, Okazawa A, Kobayashi A, Satake H (2009) Metabolic engineering of lignan biosynthesis in Forsythia cell culture. Plant Cell Physiol 50:2200–2209PubMedCrossRefGoogle Scholar
  56. Kim KW, Moinuddin SGA, Atwell KM, Costa MA, Davin LB, Lewis NG (2012) Opposite stereoselectivities of dirigent proteins in Arabidopsis and Schizandra species. J Biol Chem 287:33957–33972PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kim KW, Smith CA, Daily MD, Cort JR, Davin LB, Lewis NG (2015) Trimeric structure of (+)-pinoresinol forming dirigent protein at 1.95 Å resolution with three isolated active sites. J Biol Chem 290:1308–1318PubMedCrossRefGoogle Scholar
  58. King LS, Sullivan M (1946) The similarity of the effect of podophyllin and colchicine and their use in the treatment of condylomata acuminata. Science 104:244–245CrossRefGoogle Scholar
  59. Kumar P, Jaiswal V, Pal T, Singh J, Chauhan RS (2016) Comparative whole-transcriptome analysis in Podophyllum species identifies key transcription factors contributing to biosynthesis of podophyllotoxin in P. hexandrum. Protoplasma 254(1):217–228. doi: 10.1007/s00709-015-0938-7 PubMedCrossRefGoogle Scholar
  60. Lau E, Sattely ES (2015) Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science 349:1224PubMedCrossRefGoogle Scholar
  61. Loike JD, Horwitz SB, Grollman AP (1974) Effects of VP 16-213 on HeLa cells. Pharmacologist 16:209Google Scholar
  62. Loike JD, Brewer CF, Sternlich H, Gensler WJ, Horwitz SB (1978) Structure-activity study of the inhibition of microtubule assembly in vitro by podophyllotoxin and its congeners. Cancer Res 38:2688–2693PubMedGoogle Scholar
  63. Long BH, Minocha A (1983) Inhibition of topoisomerase II by VP-16 (etoposide), VM-26 (teniposide) and structure congeners as explanation for in vivo DNA breakage and cytotoxicitry. Proc Am Ass Cancer Res 24:321Google Scholar
  64. Malik S, Biba O, Gruz J, Arroo RRJ, Strnad M (2014) Biotechnological approaches for producing aryltetralin lignans from Linum species. Phytochem Rev 13:893–913CrossRefGoogle Scholar
  65. Marques JV, Kim KW, Lee C, Costa MA, May GD, Crow JA, Davin LB, Lewis NG (2013) Next generation sequencing in predicting gene function in podophyllotoxin biosynthesis. J Biol Chem 288:466–479PubMedCrossRefGoogle Scholar
  66. Min T, Kasahara H, Bedgar DL, Youn B, Lawrence PK, Gang DR, Halls SC, Park HJ, Hilsenbeck JL, Davin LB, Lewis NG, Kang C (2003) Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases. J Biol Chem 278:50714–50723PubMedCrossRefGoogle Scholar
  67. Mohagheghzadeh A, Hemmati S, Mehregan I, Alfermann AW (2003) Linum persicum: lignans and placement in Linaceae. Phytochem Rev 2(3):363–369CrossRefGoogle Scholar
  68. Mohagheghzadeh A, Hemmati S, Alfermann AW (2006) Quantification of aryltetralin lignans in Linum album organs and in vitro cultures. Iran J Pharm Sci 2(1):47–56Google Scholar
  69. Moraes RM, Lata H, Bedir E, Maqbool M, Cushman K (2002) The American mayapple and its potential for podophyllotoxin production. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS, AlexandriaGoogle Scholar
  70. Moss GP (2000) Nomenclature of lignans and neolignans. Pure Appl Chem 72(8):1493–1523CrossRefGoogle Scholar
  71. Muranaka T, Miyata M, Kazutaka I, Tachibana S (1998) Production of podophyllotoxin in Juniperus chinensis callus cultures treated with oligosaccharides and a biogenetic precursor. Phytochemistry 49:491–496CrossRefGoogle Scholar
  72. Murata J, Matsumoto E, Morimoto K, Koyama T, Satake H (2015) Generation of triple-transgenic Forsythia cell cultures as a platform for the efficient, stable, and sustainable production of lignans. PLoS One 10(12):e0144519PubMedPubMedCentralCrossRefGoogle Scholar
  73. Nitiss JL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9:338–350PubMedPubMedCentralCrossRefGoogle Scholar
  74. Pare PW, Wang HB, Davin LB, Lewis NG (1994) (+)-pinoresinol synthase: a stereoselective oxidase catalysing 8,8-lignan formation in Forsythia intermedia. Tetrahedron Lett 35:4731–4734CrossRefGoogle Scholar
  75. Pickel B, Schaller A (2013) Dirigent proteins: molecular characteristics and potential biotechnological applications. Appl Microbiol Biotechnol 97:8427–8438PubMedCrossRefGoogle Scholar
  76. Pickel B, Constantin MA, Pfannstiel J, Conrad J, Beifuss U, Schaller A (2010) An enantiocomplementary dirigent protein for the enantioselective laccase-catalyzed oxidative coupling of phenols. Angew Chem Int Ed 49:202–204CrossRefGoogle Scholar
  77. Podwyssotzki V (1880) Pharmacologische studien uber Podophyllum peltatum. Arch Exp Pathol Pharmakol 13:29–52CrossRefGoogle Scholar
  78. Portyanko AS, Akalovich ST, Doroshenko TM (2015) Beta-III tubulin as a potential target for blocking invasive growth of malignant epithelial tumors. Eksp Klin Farmakol 78(8):25–28PubMedGoogle Scholar
  79. Ragamustari SK, Nakatsubo T, Hattori T, Ono E, Kitamura Y, Suzuki S, Yamamura M, Umezawa T (2013) A novel O-methyltransferase involved in the first methylation step of yatein biosynthesis from matairesinol in Antriscus sylvestris. Plant Biotechnol 30:375–384CrossRefGoogle Scholar
  80. Ravanbakhsh S, Gajewski M, Greiner R, Tuszynski JA (2013) Determination of the optimal tubulin isotype target as a method for the development of individualized cancer chemotherapy. Theor Biol Med Modell 10:29CrossRefGoogle Scholar
  81. Ravelli RBG, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, Knossow M (2004) Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428:198–202PubMedCrossRefGoogle Scholar
  82. Renouard S, Corbin C, Lopez T, Montguillon J, Gutierrez L, Lamblin F, Laine F, Hano C (2012) Abscisic acid regulates pinoresinol–lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds. Planta 235:85–98PubMedCrossRefGoogle Scholar
  83. Sakakibara N, Suzuki S, Umezawa T, Shimada M (2003) Biosynthesis of yatein in Anthriscus sylvestris. Org Biomol Chem 1:2474–2485PubMedCrossRefGoogle Scholar
  84. Sasheva P, Ionkova I (2015) Podophyllotoxin production by cell cultures of Linum thracicum ssp. thracicum Degen elicited with methyl jasmonate and salicylic acid. C R Acad Bulg Sci 68(7):883–888Google Scholar
  85. Sasheva P, Letkarska G, Ionkova I (2013) Biotechnological production of podophyllotoxin and podophyllotoxin-related lignans in cultures of Linum thracicum Degen. C R Acad Bulg Sci 66(10):1445–1450Google Scholar
  86. Sasheva P, Ionkova I, Stoilova N (2015) Methyl jasmonate induces enhanced podophyllotoxin production in cell cultures of thracian flax (Linum thracicum ssp. thracicum). Nat Prod Commun 10(7):1225–1228PubMedGoogle Scholar
  87. Satake H, Ono E, Murata J (2013) Recent advances in metabolic engineering of lignan biosynthesis pathways for the production of transgenic plant-based foods and supplements. J Agric Food Chem 61:11721–11729PubMedCrossRefGoogle Scholar
  88. Shams-Ardakani M, Hemmati S, Mohagheghzadeh A (2005) Effect of elicitors on the enhancement of podophyllotoxin biosynthesis in suspension cultures of Linum album. DARU 13(2):56–60Google Scholar
  89. Smollny T, Wichers H, de Rijk T, van Zwam A, Shahsavari A, Alfermann AW (1992) Formation of lignans in suspension cultures of Linum album. Planta Med 58:A622–A624CrossRefGoogle Scholar
  90. Smollny T, Wichers H, Kalenberg S, Shahsavari A, Petersen M, Alfermann AW (1998) Accumulation of podophyllotoxin and related lignans in cell suspension cultures of Linum album. Phytochemistry 48:575–579CrossRefGoogle Scholar
  91. Stahelin HF, von Wartburg A (1991) The chemical and biological route from podophyllotoxin glucoside to etoposide: ninth cain memorial award lecture. Cancer Res 51:5–15PubMedGoogle Scholar
  92. Stanton RA, Gernet KM, Nettles JH, Aneja R (2011) Drugs that target dynamic microtubules: a new molecular perspective. Med Res Rev 31(3):443–481PubMedPubMedCentralCrossRefGoogle Scholar
  93. Suzuki S, Umezawa T (2007) Biosynthesis of lignans and norlignans. J Wood Sci 53:273–284CrossRefGoogle Scholar
  94. Suzuki S, Umezawa T, Shimada M (2002a) Stereochemical diversity in lignan biosynthesis of Arctium lappa. Biosci Biotechnol Biochem 66:1262–1269PubMedCrossRefGoogle Scholar
  95. Suzuki S, Sakakibara N, Umezawa T, Shimada M (2002b) Survey and enzymatic formation of lignans of Anthriscus sylvestris. J Wood Sci 48:536–541CrossRefGoogle Scholar
  96. Tahsili J, Sharifi M, Safaie N, Esmaelizadeh-Bahabadi S, Behmanesh M (2014) Induction of lignans and phenolic compounds in cell culture of Linum album by culture filtrate of Fusarium graminearum. J Plant Interact 9:412–417CrossRefGoogle Scholar
  97. Ter Haar E, Rosenkranz HS, Hamel E, Day BW (1996) Computational and molecular modeling evaluation of the structural basis for tubulin polymerisation inhibition by colchicine site agents. Bioorg Med Chem 4:1659–1671PubMedCrossRefGoogle Scholar
  98. Toyoda E, Kagaya S, Cowell IG, Kurosawa A, Kamoshita K, Nishikawa K, Iizumi S, Koyama H, Austin CA, Adachi N (2008) NK314, a topoisomerase II inhibitor that specifically targets the alpha isoform. J Biol Chem 283:23711–23720PubMedPubMedCentralCrossRefGoogle Scholar
  99. Tseng CY, Mane JY, Winter P, Johnson L, Huzil T, Izbicka E, Luduena RF, Tuszynski JA (2010) Quantitative analysis of the effect of tubulin isotype expression on sensitivity of cancer cell lines to a set of novel colchicine derivatives. Mol Cancer 9:131PubMedPubMedCentralCrossRefGoogle Scholar
  100. Umezawa T (2003) Phylogenetic distribution of lignan producing plants. Wood Res 90:27–110Google Scholar
  101. Umezawa T, Davin LB, Lewis NG (1991) Formation of lignans(−)-secoisolariciresinol and (−)-matairesinol with Forsythia intermedia cell-free extracts. J Biol Chem 266:10210–10217PubMedGoogle Scholar
  102. van Furden B, Humburg A, Fuss E (2005) Influence of methyl jasmonate on podophyllotoxin and 6-methoxypodophyllotoxin accumulation in Linum album. Plant Cell Rep 24:312–317PubMedCrossRefGoogle Scholar
  103. van Uden W, Pras N, Visser JF, Malingre TM (1989) Detection and identification of podophyllotoxin produced by cell cultures from Podophyllum hexandrum Royle. Plant Cell Rep 8:165–168PubMedCrossRefGoogle Scholar
  104. van Uden W, Pras N, Malingre TM (1990) The accumulation of podophyllotoxin-b-D-glucoside by cell suspension cultures derived from the conifer Callitris dummondii. Plant Cell Rep 9:257–260PubMedCrossRefGoogle Scholar
  105. Vasilev N, Ionkova I (2006) Isolation and structure elucidation of aryltetralin lignans from Linum tauricum ssp. bulgaricum. Pharmacogn Mag 2(7):172–177Google Scholar
  106. Wankhede DP, Biswas DK, Rajkumar S, Sinha AK (2013) Expressed sequence tags and molecular cloning and characterization of gene encoding pinoresinol/lariciresinol reductase from Podophyllum hexandrum. Protoplasma 250(6):1239–1249PubMedCrossRefGoogle Scholar
  107. Wendorff TJ, Schmidt BH, Heslop P, Austin CA, Berger JM (2012) The structure of DNA-bound human topoisomerase II alpha: conformational mechanisms for coordinating inter-subunit interactions with DNA cleavage. J Mol Biol 424:109–124PubMedPubMedCentralCrossRefGoogle Scholar
  108. Weng JK, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytol 187:273–285PubMedCrossRefGoogle Scholar
  109. Wu CC, Li TK, Farh L, Lin LY, Lin TS, Yu YJ, Yen TJ, Chiang CW, Chan NL (2011) Structural basis of type II topoisomerase inhibition by the anticancer drug etoposide. Science 333:459–462PubMedCrossRefGoogle Scholar
  110. Xia ZQ, Costa MA, Proctor J, Davin LB, Lewis NG (2000) Dirigent-mediated podophyllotoxin biosynthesis in Linum flavum and Podophyllum peltatum. Phytochemistry 55:537–549PubMedCrossRefGoogle Scholar
  111. Xia ZQ, Costa MA, Pelissier HC, Davin LB, Lewis NG (2001) Secoisolariciresinol dehydrogenase purification, cloning and functional expression: implications for human health protection. J Biol Chem 276:12614–12623PubMedCrossRefGoogle Scholar
  112. Youn B, Moinuddin SGA, Davin LB, Lewis NG, Kang CH (2004) Crystal structures of apo-form and binary/ternary complexes of Podophyllum secoisolariciresinol dehydrogenase, an enzyme involved in formation of health-protecting and plant defense lignans. J Biol Chem 280:12917–12926CrossRefGoogle Scholar
  113. Yousefzadi M, Sharifi M, Behmanesh M, Moyano E, Bonfill M, Cusido RM, Palazon J (2010a) Podophyllotoxin: current approaches to its biotechnological production and future challenges. Eng Life Sci 10(4):281–292CrossRefGoogle Scholar
  114. Yousefzadi M, Sharifi M, Chashmi NA, Behmanesh M, Ghasempour A (2010b) Optimization of podophyllotoxin extraction method from Linum album cell cultures. Pharm Biol 48(12):1421–1425PubMedCrossRefGoogle Scholar
  115. Yousefzadi M, Sharifi M, Behmanesh M, Ghasempour A, Moyano E, Palazon J (2010c) Salicylic acid improves podophyllotoxin production in cell cultures of Linum album by increasing the expression of genes related with its biosynthesis. Biotechnol Lett 32(11):1739–1743PubMedCrossRefGoogle Scholar
  116. Yousefzadi M, Sharifi M, Behmanesh M, Ghasempour A, Elisabeth M, Palazon J (2012) The effect of light on gene expression and podophyllotoxin biosynthesis in Linum album cell culture. Plant Physiol Biochem 56:41–46PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PharmacognosyMedical University of SofiaSofiaBulgaria

Personalised recommendations