Skip to main content

Anticancer Drugs from Plants

Abstract

Cancer is a major problem of public health and one of the main causes of death around the globe. According to World Health Organization, the prevalence of this disease is rising, however, more rapidly in Africa, Asia, and Central and South America that account for about 70% of cancer deaths in the world. The chemotherapy is one of the ways to treat this disease and the advances in anticancer drugs have improved patient care. Plants have been used to treat different diseases since ancient times. Among the anticancer drugs, about 50% come from natural products as isolated or semisynthetic or related synthetic compounds and plants represent important source of these substances. Taxol, vinca alkaloids, camptothecin, and podophyllotoxins, as well as their semisynthetic or synthetic derivatives, are the most important anticancer drugs obtained from plants. In this chapter, we review the importance of plants as source of drugs and describe these anticancer compounds. The continuing search for antitumor agents from plants is extremely necessary to find the possible ways to have safe and more effective treatment for this health problem.

Keywords

  • Antitumoral compounds
  • Medicinal plants
  • Neoplasm
  • Taxol
  • Vinca alkaloids

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine FN, Rosenthal PJ, D’Alessandro U (2011) Quinine, an old antimalarial drug in a modern world: role in the treatment of malaria. Malar J 1(10):1–14

    Google Scholar 

  • Adamovics JA, Cina JA, Hutchinson CR (1979) Minor alkaloids of Camptotheca acuminate. Phytochemistry 18:1085–1086

    CrossRef  CAS  Google Scholar 

  • Aiyama R, Nagai H, Nokata K, Shinohara C, Sawada S (1988) A camptothecin derivative from Notapodytes foetida. Phytochemistry 27:3663–3664

    CrossRef  CAS  Google Scholar 

  • Arisawa M, Gunasekera SP, Cordell GA, Farnsworth NR (1981) Plant anticancer agents XXI. Constituents of Merrilliodendron megacarpum. Planta Med 43:404–407

    CrossRef  CAS  PubMed  Google Scholar 

  • BioNap (2016) Oasmia pharmaceuticals—advancing nanotechnology based chemotherapies. http://www.bionapcfa.com/2016/03/oasmia-pharmaceuticals-advancing.html. Accessed 24 Nov 2016

  • Bohlin L, Rositn B (1996) Podophyllotoxin derivatives: drug discovery and development. Drug Discov Today 1:343–351

    CrossRef  CAS  Google Scholar 

  • Borah JC, Gogoi S, Boruwa J, Kalita B, Barua NC (2004) A highly efficient synthesis of the C-13 side-chain of taxol using Shibasaki’s asymmetric Henry reaction. Tetrahedron Lett 45(18):3689–3691

    CrossRef  CAS  Google Scholar 

  • Botta B, Delle Monache G, Misiti D, Vitali A, Zappia G (2001) Aryltetralin lignans: chemistry, pharmacology and biotransformations. Curr Med Chem 8:1363–1381

    CrossRef  CAS  PubMed  Google Scholar 

  • Brandão HN, Medrado HHS, David JP, David JM, Pastore JFB, Meira M (2017) Determination of podophyllotoxin and related aryltetralin lignans by HPLC/DAD/MS from Lamiaceae species. Microchem J 130:179–184

    CrossRef  CAS  Google Scholar 

  • Brewer CF, Loike JD, Horwitz SD, Sternlicht H, Gensler WJ (1979) Conformational analysis of podophyllotoxin and its congeners. Structure—activity relationship in microtubule assembly. J Med Chem 22:215–221

    CrossRef  CAS  PubMed  Google Scholar 

  • Cantrell CL, Zheljazkov VD, Osbrink WLA, Castro A, Maddox V, Craker LE, Astatkie T (2013) Podophyllotoxin and essential oil profile of Juniperus andrelated species. Ind Crop Prod 43:668–676

    CrossRef  CAS  Google Scholar 

  • Chattopadhyay S, Srivastava AK, Bhojwani SS, Bisaria VS (2002) Production of podophyllotoxin by plant cell cultures of Podophyllum hexandrum in bioreactor. J Biosci Bioeng 93:215–220

    CrossRef  CAS  PubMed  Google Scholar 

  • Cope EA (1998) Taxaceae: the genera and cultivated species. Bot Rev 64:291–322

    CrossRef  Google Scholar 

  • Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui LJ, Ni XL, Ji Q, Teng XJ, Yang YR, Wu C, Zekria D et al (2015) Co-overexpression of geraniol-10-hydroxylase and strictosidine synthase improves anti-cancer drug camptothecin accumulation in Ophiorrhiza pumila. Sci Rep 5:8227

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahmke IN, Boettcher SP, Groh M, Mahlkecht U (2014) Cooking enhances curcumin anti-cancerogenic activity through pyrolytic formation of deketene curcumin. Food Chem 151:514–519

    CrossRef  CAS  PubMed  Google Scholar 

  • Dai JR, Cardellina JH, Boyd MR (1999) 20-Ob-Glucopyranosyl camptothecin from Mostuea brunonis: a potential camptothecin pro-drug with improved solubility. J Nat Prod 62:1427–1429

    CrossRef  CAS  PubMed  Google Scholar 

  • Dall’Acqua S (2014) Natural products as antimitotic agents. Curr Top Med Chem 14:2272–2285

    CrossRef  PubMed  CAS  Google Scholar 

  • Davis C, Fanning K, Trueman S, Williams D (2011) Growing the Chinese happy tree (Xi Shu) in Australia-maximising the extraction of the anti-cancer compound camptothecin. RIRDC Publication, Australia

    Google Scholar 

  • de Sa IM (2011) Chloroquine resistance and the search for antimalarial drugs from the 1960s to 1980s. Hist Cienc Saude Manguinhos 18(2):407–430

    CrossRef  PubMed  Google Scholar 

  • de Sant’Ana RS, de Castro Mattos JS, da Silva AS, de Mello LM, Nunes AA (2016) Associated factors with mammographic changes in women undergoing breast cancer screening. Einstein 14(3):324–329

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Denis JN, Greene AE, Guenard D, Gueritte-Voegelein F, Mangatal L, Potier P (1988) Highly efficient, practical approach to natural taxol. J Am Chem Soc 110(17):5917–5919

    CrossRef  CAS  Google Scholar 

  • Doussot J, Mathieu V, Colas C, Molinie R, Corbin C, Montguillon J, Moreno Y, Banuls L, Renouard S, Lamblin F, Dupre P (2016) Investigation of the lignan content in extracts from Linum, Callitris and Juniperus species in relation to their in vitro antiproliferative ctivities. Planta Med. doi:10.1055/s-0042-118711

    PubMed  Google Scholar 

  • Du Y, Kong G, You X et al (2012) Elevation of highly up-regulated in liver cancer (HULC) by hepatitis B virus X protein promotes hepatoma cell proliferation via down-regulating p18. J Biol Chem 287(31):26302–26311

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Expósito O, Bonfill M, Moyano E, Onrubia M, Mirjalili MH, Cusido RM, Palazón J (2009) Biotechnological production of taxol and related taxoids: current state and prospects. Anti Cancer Agents Med Chem 9:109–121

    CrossRef  Google Scholar 

  • Fassberg J, Stella VJ (1992) A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogues. J Pharm Sci 81(7):676–684

    CrossRef  CAS  PubMed  Google Scholar 

  • Fauzee NJS, Dong Z, Wang YL (2011) Taxanes: promising anti-cancer drugs. Asian Pac J Cancer Prev 12:837–851

    PubMed  Google Scholar 

  • Federolf K, Alfermann AW, Fuss E (2007) Aryltetralin-lignan formation in two different cell suspension cultures of Linum album: deoxypodophyllotoxin 6-hydroxylase, a key enzyme for the formation of 6-methoxypodophyllotoxin. Phytochemistry 68:1397–1406

    CrossRef  CAS  PubMed  Google Scholar 

  • Fett-Neto AG, DiCosmo F, Reynolds WF, Sakata K (1992) Cell culture of Taxus as a source of the antineoplastic drug taxol and related taxanes. Bio/Technology 10:1572–1576

    CrossRef  CAS  PubMed  Google Scholar 

  • Fonseca JDS, Farías RAQ (2016) Obesity and cancer: pathophysiology and epidemiological evidence. Rev Med Ris 22(2):91–97

    Google Scholar 

  • Frense D (2007) Taxanes: perspectives for biotechnological production. Appl Microbiol Biotechnol 73:1233–1240

    CrossRef  CAS  PubMed  Google Scholar 

  • Futreal PA, Coin L, Marshall M et al (2004) A census of human genes. Nat Rev Cancer 4(3):177–183

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Garawal T (2016) Taxus: an endangered genus. Int J Agr Sci Res 6(2):175–178

    Google Scholar 

  • Garcia-Carbonero R, Supko J (2002) Current perspectives on the clinical experience, pharmacology, and continued development of the camptothecins. Clin Cancer Res 8:641–661

    CAS  PubMed  Google Scholar 

  • Gelderblom H, Verweij J, Nooter K, Sparreboom A (2001) Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 37(13):1590–1598

    CrossRef  CAS  PubMed  Google Scholar 

  • Gensler WJ, Gatsonis CD (1966) Synthesis of podophyllotoxin. J Organomet Chem 31:4004–4008

    CrossRef  CAS  Google Scholar 

  • Giachetti D, Monti L (2005) Medicinal plant in phytotherapy. Ann Ist Super Sanita 41(1):17–22

    PubMed  Google Scholar 

  • Golberg DR (2009) Aspirin: turn of the century miracle drug. https://www.chemheritage.org/distillations/magazine/aspirin-turn-of-the-century-miracle-drug. Accessed 30 Sep 2016

  • Gordaliza M, Garcia PA, Miguel del Corral JM, Castro MA, Gomez-Zurita MA (2004) Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon 44:441–459

    CrossRef  CAS  PubMed  Google Scholar 

  • Goss A (2014) Building the world’s supply of quinine: Dutch colonialism and the origins of a global pharmaceutical industry. Endeavour 38(1):8–18

    CrossRef  PubMed  Google Scholar 

  • Gottlieb JA, Luce JK (1972) Treatment of malignant melanoma with camptothecin (NSC-100880). Cancer Chemother Rep 56(1):103–105

    CAS  PubMed  Google Scholar 

  • Gunasekera SP, Badawi MM, Cordell GA, Farnsworth NR, Chitnis M (1979) Plant anticancer agents X. Isolation of camptothecin and 9-methoxycamptothecin from Ervatamia heyneana. J Nat Prod 42:475–477

    CrossRef  CAS  PubMed  Google Scholar 

  • Gupta D (2015) An overview of taxus. J Drug Discov Therap BP 3(29):1–7

    CAS  Google Scholar 

  • Haaz MC, Rivory L, Riché C, Vernillet L, Robert J (1998) Metabolism of irinotecan (CPT-11) by human hepatic microsomes: participation of cytochrome P-450 3A and drug interactions. Cancer Res 58:468–472

    CAS  PubMed  Google Scholar 

  • Hamamoto H, Mamedov VA, Kitamoto M, Hayashi N, Tsuboi S (2000) Chemoenzymatic synthesis of the C-13 side chain of paclitaxel (Taxol) and docetaxel (Taxotere). Tetrahedron Asymmetry 11(22):4485–4497

    CrossRef  CAS  Google Scholar 

  • Hartmann JT, Lipp H-P (2006) Camptothecin and podophyllotoxin derivatives inhibitors of topoisomerase I and II—mechanisms of action, pharmacokinetics and toxicity profile. Drug Saf 29(3):209–230

    CrossRef  CAS  PubMed  Google Scholar 

  • Hartwell JL, Schrecker AW (1951) Components of podophyllin. V. The constitution of podophyllotoxin. J Am Chem Soc 73:2909–2916

    CrossRef  CAS  Google Scholar 

  • Herzog TJ (2002) Update on the role of topotecan in the treatment of recurrent ovarian cancer. Oncologist 7(Suppl. 5):3–10

    CrossRef  CAS  PubMed  Google Scholar 

  • Holgado E, Perez M, Wren A, Cortes J, Gomez-Pinillo A (2015) Influencing cancer treatment. Lancet Oncol 16:1591–1593

    CrossRef  PubMed  Google Scholar 

  • Holton RA, Somoza C, Kim HB (1994) First total synthesis of Taxol. L Functionalization of the B ring. J Am Chem Soc 116:1597–1560

    CrossRef  CAS  Google Scholar 

  • Hoogte ARVD, Pieters T (2014) Science in the service of colonial agro-industrialism: the case of cinchona cultivation in the Dutch and British East Indies, 1852–1900. Stud Hist Phil Biol Biomed Sci 47:12–22

    CrossRef  Google Scholar 

  • Horwitz SB (1994) Taxol (paclitaxel): mechanisms of action. Ann Oncol 5(Suppl 6):S3–S6

    PubMed  Google Scholar 

  • Hsiang Y-H, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260:14873–14878

    CAS  PubMed  Google Scholar 

  • Hsiang Y-H, Lihou MG, Liu LF (1989) Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res 49:5077–5082

    CAS  PubMed  Google Scholar 

  • Humerickhouse R, Lohrbach K, Li L, Bosron W, Dolan ME (2000) Characterization of CPT-11 hydrolysis by human liver carboxylesterase isoforms hCE-1 and hCE-2. Cancer Res 60:1189–1192

    CAS  PubMed  Google Scholar 

  • Huxtable RJ, Schwarz KV (2001) The isolation of morphine: first principles in science and ethics. Mol Interv 14:189–191

    Google Scholar 

  • Imbert TF (1998) Discovery of podophyllotoxins. Biochimie 80:207–222

    CrossRef  CAS  PubMed  Google Scholar 

  • Kai GY, Dai LM, Mei XY, Zheng JG, Wang W, Lu Y, Qian ZY, Zhou GY (2008) In vitro plant regeneration from leaf explants of Ophiorrhiza japonica. Biol Plant 52(3):557–560

    CrossRef  CAS  Google Scholar 

  • Kai GY, Li SS, Wang W, Lu Y, Wang J, Liao P, Cui LJ (2013) Molecular cloning and expression analysis of a new gene encoding 3-hydroxy-3-methylglutaryl-CoA synthase from Camptotheca acuminata. Russ J Plant Physiol 60(1):131–138

    CrossRef  CAS  Google Scholar 

  • Kai GY, Teng XJ, Cui LJ, Li SS, Hao XL, Shi M, Yan B (2014) Effect of three plant hormone elicitors on the camptothecin accumulation and gene transcript profiling in Camptotheca acuminata seedlings. Inter J Sci 3(1):86–95

    Google Scholar 

  • Kai G, Wu C, Gen L, Zhang L, Cui L, Ni X (2015) Biosynthesis and biotechnological production of anti-cancer drug Camptothecin. Phytochem Rev 14:525–539

    CrossRef  CAS  Google Scholar 

  • Kaplan IW (1942) Condyloma acuminate. New Orleans Med Surg J 94:388–390

    Google Scholar 

  • Karuppaiya P, Tsay HS (2015) Therapeutic values, chemical constituents and toxicity of Taiwanese Dysosma pleiantha—a review. Toxicol Lett 236:90–97

    CrossRef  CAS  PubMed  Google Scholar 

  • Khaled M, Jiang ZZ, Zhang LY (2013) Deoxypodophyllotoxin: a promising therapeutic agent from herbal medicine. J Ethnopharmacol 149:24–34

    CrossRef  CAS  PubMed  Google Scholar 

  • Khaled M, Belaaloui G, Jiang Z-Z, Zhu X, Zhang L-Y (2016) Antitumor effect of deoxypodophyllotoxin on human breast cancer xenograft transplanted in BALB/c nude mice model. J Infect Chemother 22:692–696

    CrossRef  CAS  PubMed  Google Scholar 

  • Kim YK, Koo NY, Yun PY (2015) Anticancer effects of CKD-602 (Camtobell®) via G2/M phase arrest in oral squamous cell carcinoma cell lines. Oncol Lett 9(1):136–142

    PubMed  Google Scholar 

  • King IS, Sullivan M (1946) The similarity of the effects of podophyllotoxin and colchicine and their use of in treatment Condyloma acuminate. Science 104:244–245

    CrossRef  CAS  Google Scholar 

  • Kinsley-Scott TR, Norton SA (2003) Useful plants of dermatology. VII: cinchona and antimalarials. J Am Acad Derma 49(3):499–502

    CrossRef  Google Scholar 

  • Koskinen AMP, Karvinen EK, Siirila JP (1994) Enantioselective synthesis of the Taxol and Taxotere side chains. J Chem Soc Chem Commun 1:21–22

    CrossRef  Google Scholar 

  • Kruczynski A, Hill BT (2001) Vinflunine, the latest Vinca alkaloid in clinical development: a review of its preclinical anticancer properties. Crit Rev Oncol Hematol 40:159–173

    CrossRef  CAS  PubMed  Google Scholar 

  • Labreche F, Duguay P, Boucher A, Arcand R (2014) Estimating the proportion of occupational câncer with minimal resources: an example from Quebec. Occup Environ Med 71(6):A90

    Google Scholar 

  • Li S, Yi Y, Wang Y, Zhang Z, Beasley RS (2002) Camptothecin accumulation and variations in Camptotheca. Planta Med 68:1010–1016

    CrossRef  CAS  PubMed  Google Scholar 

  • Liu WC, Gonga T, Zhu P (2016) Advances in exploring alternative Taxol sources. RSC Adv 6:48800–48809

    CrossRef  CAS  Google Scholar 

  • López-Meyer M, Nessler CL, McKnight TD (1994) Sites of accumulation of the antitumor alkaloid camptothecin in Camptotheca acuminata. Planta Med 60:558–560

    CrossRef  PubMed  Google Scholar 

  • Lorence A, Nessler CL (2004) Camptothecin, over four decades of surprising findings. Phytochemistry 65:2735–2749

    CrossRef  CAS  PubMed  Google Scholar 

  • Mahdi JG, Mahdi AJ, Mahdi AJ, Bowen ID (2006) The historical analysis of aspirin discovery, its relation to the willow tree and antiproliferative and anticancer potential. Cell Prolif 39:147–155

    CrossRef  CAS  PubMed  Google Scholar 

  • Malik S, Cusido RM, Mirjalili MH, Moyano E, Palazon J, Bonfill M (2011) Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem 46:23–34

    CrossRef  CAS  Google Scholar 

  • Malik S, Mirjalili MH, Fett-Neto A, Mazzafera P, Bonfill M (2013) Living between two worlds: two-phase culture systems for producing plant secondary metabolites. Crit Rev Biotechnol 33(1):1–22

    CrossRef  CAS  PubMed  Google Scholar 

  • Malik S, Bhushan S, Sharma M, Ahuja PS (2014a) Biotechnological approaches to the production of shikonins: a critical review with recent updates. Crit Rev Biotechnol 16:1–14

    Google Scholar 

  • Malik S, Biba O, Gruz J, Arroo RRJ, Strnad M (2014b) Biotechnological approaches for producing aryltetralin lignans from Linum species. Phytochem Rev 13:893–913

    CrossRef  CAS  Google Scholar 

  • Malonne H, Atassi G (1997) DNA topoisomerase targeting drugs: mechanisms of action and perspectives. Anti-Cancer Drugs 8:811–822

    CrossRef  CAS  PubMed  Google Scholar 

  • Marrelli M, Conforti F, Statti GA, Cachet X, Michel S, Tillequin F, Menichini F (2011) Biological potential and structure activity relationships of most recently developed vascular disrupting agents: an overview of new derivatives of natural combretastatin A-4. Curr Med Chem 18:3035–3081

    CrossRef  CAS  PubMed  Google Scholar 

  • Mathijssen RHJ, van Alphen RJ, Verweij J, Loos WL, Nooter K, Stoter G, Sparreboom A (2001) Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res 7:2182–2196

    CAS  PubMed  Google Scholar 

  • McWhirter JE, Hoffman-Goetz L (2016) Coverage of skin cancer risk factors and UV behaviors in popular U.S. magazines from 2000 to 2012. J Cancer Educ 31:382–388

    CrossRef  PubMed  Google Scholar 

  • Moertel CG, Schutt AJ, Reitemeier RJ, Hahn RG (1972) Phase II study of camptothecin (NSC-100880) in the treatment of advanced gastrointestinal cancer. Cancer Chemother Rep 56(1):95–101

    CAS  PubMed  Google Scholar 

  • Mojica MA, Leon A, Rojas-Sepulveda AM, Marquina S, Mendieta-Serrano MA, Salas-Vidal E, Villarreal ML, Alvarez L (2016) Aryldihydronaphthalene-type lignans from Bursera fagaroides var. fagaroides and their antimitotic mechanism of action. RSC Adv 6:4950–4959

    CrossRef  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni XL, Wen SQ, Wang W, Wang XY, Xu H, Kai GY (2011) Enhancement of camptothecin production in Camptotheca acuminata hairy roots by overexpressing ORCA3 gene. J Appl Pharm Sci 1(8):85–88

    Google Scholar 

  • Nicolau KC, Yang Z, Liu JJ, Ueno H, Nantermet PG, Guy RK, Clairborne CF et al (1994) Total synthesis of taxol. Nature 367:630–634

    CrossRef  Google Scholar 

  • Noble RL (1990) The discovery of the vinca alkaloid schemo therapeutic agents against cancer. Biochem Cell Biol 68:1344–1351

    CrossRef  CAS  PubMed  Google Scholar 

  • O’Neill PM, Posner GH (2004) A medicinal chemistry perspective on artemisinin and related endoperoxides. J Med Chem 47:2945–2964

    CrossRef  PubMed  CAS  Google Scholar 

  • Patridge E, Gareiss P, Kinch MS, Hoyer D (2016) An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discovery Today 21(2):204–207

    Google Scholar 

  • Pazdur R (2013) Cancer drug information. http://www.cancer.gov/cancertopics/druginfo/fda-nanoparticle-paclitaxel. Accessed 24 Nov 2016

  • Peña-Morán OA, Villarreal ML, Álvarez-Berber L, Meneses-Acosta A, Rodríguez-López V (2016) Cytotoxicity, post-treatment recovery, and selectivity analysis of naturally occurring podophyllotoxins from Bursera fagaroides var. fagaroides on breast cancer cell lines. Molecules 21:1013–1028

    CrossRef  CAS  Google Scholar 

  • Petter M (2015) Shining a spotlight on occupational cancers. Safet Health Pract 33(10):8

    Google Scholar 

  • Pettit GR, Searcy JD, Tan R, Cragg GM, Melody N, Knight JC, Chapuis J-C (2016) Antineoplastic Agents. 585. Isolation of Bridelia ferruginea anticancer podophyllotoxins and synthesis of 4-Aza-podophyllotoxin structural modifications. J Nat Prod 79:507–518

    CrossRef  CAS  PubMed  Google Scholar 

  • Pizzolato LBS (2003) The camptothecins. Lancet 361:2235–2242

    CrossRef  CAS  PubMed  Google Scholar 

  • Polovich M, Olsen M, LeFebvre K (2014) Chemotherapy and biotherapy guidelines and recommendations for practices. Oncology Nursing Society, Pittsburg

    Google Scholar 

  • Qazi PH, Rashid A, Shaw SA (2011) Podophyllum hexandrum—a versatile medicinal plant. Int J Pharm Pharm Sci 3:261–268

    Google Scholar 

  • Rahmani A, Adebasis YA, ALY S (2015) Role of green tea and its constituent epigallocatechin-3-gallate in the health management. Int J Pharm Pharm Sci 7(3):6–12

    CAS  Google Scholar 

  • Rao Y, Zhang D, Li R (2015) Tu Youyou and the discovery of artemisinin: 2015 nobel laureate in physiology or medicine. World Scientific, London

    Google Scholar 

  • Renouard S, Corbina C, Colas C, Fidel T, Lopez T, Leclerc EA, Hendrawati O, Falguières A, Doussot J, Ferroud C, Maunit B, Lainé E, Hano C (2015) Aerial parts of Callitris species as a rich source of deoxypodophyllotoxin. Ind Crop Prod 63:53–57

    CrossRef  CAS  Google Scholar 

  • Rodrigues DE, Moreira KFA, Oliveira TS (2016) Barriers to prevention of cervical cancer in the city of Porto Velho, Rondônia, Brazil. Invest Educ Enferm 34(1):58–66

    Google Scholar 

  • Rowinsky EK (1994) Update on the antitumor activity of paclitaxel in clinical trials. Ann Pharmacother 28(5 Suppl):S18–S22

    CrossRef  CAS  PubMed  Google Scholar 

  • Rowinsky EK, Onetto N, Canetta RM, Arbuck SG (1992) Taxol: the first of the taxanes, an important new class of antitumor agents. Semin Oncol 19(6):646–662

    CAS  PubMed  Google Scholar 

  • Saito K, Sudo H, Yamazaki M, Koseki-Nakamura M, Kitajima M, Takayama H, Aimi N (2001) Feasible production of camptothecin by hairy root culture of Phiorrhiza pumila. Plant Cell Rep 20:267–271

    CrossRef  CAS  Google Scholar 

  • Salim V, de Luca V (2013) Towards complete elucidation of monoterpene indole alkaloid biosynthesis pathway: Catharanthus roseus as a pioneer system. In: New light on alkaloid biosynthesis and prospects, 1st edn. Elsevier, London.

    Google Scholar 

  • Schacter L (1996) Etoposide phosphate: what, why, where, and how? Semin Oncol 23:1–7

    CAS  PubMed  Google Scholar 

  • Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 22:665–666

    CrossRef  Google Scholar 

  • Schippmann U (2001) Medicinal plants significant trade study (CITES Project S-109). German Federal Agency for Nature Conservation, Bonn

    Google Scholar 

  • Seidlova-Massinova V, Santavy M, Santavy J (1957) The biological effect of some podophyllotoxin compounds and their dependence on chemical structure. J Natl Cancer Inst 18:359–369

    Google Scholar 

  • Sena JS, Girão RJS, Figueiredo SM et al (2016) Occupational skin cancer: systematic review. Rev Assoc Med Bras 62(3):280–286

    CrossRef  PubMed  Google Scholar 

  • Shankari V, Gurunathan S (2015) Drug discovery: an appraisal. Int J Pharm Pharm Sci 7(4):59–66

    Google Scholar 

  • Singh J, Shah NC (1994) Podophyllum: a review. Curr Res Med Arom Plants 16:53–83

    Google Scholar 

  • Singla AK, Garg A, Aggarwal D (2002) Paclitaxel and its formulations. Int J Pharm 235(1–2):179–192

    CrossRef  CAS  PubMed  Google Scholar 

  • Sirikantaramas S, Asano T, Sudo H, Yamazaki M, Saito K (2007) Camptothecin: therapeutic potential and biotechnology. Curr Pharm Biotechnol 8:196–202

    CrossRef  CAS  PubMed  Google Scholar 

  • Slichenmyer W, Rowinsky EK, Donehower RC, Kaufmann SH (1993) The current status of camptothecin analogues as antitumor agents. J Natl Cancer Inst 85:271–291

    CrossRef  CAS  PubMed  Google Scholar 

  • Stähelin HF, von Wartburg A (1991) The chemical and biological route from podophyllotoxin glucoside to etoposide: ninth cain memorial award lecture. Cancer Res 51:5–15

    PubMed  Google Scholar 

  • Sterwart BW, Wild CP (2014) World cancer report 2014. http://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-Cancer-Report-2014. Accessed 25 Sep 2016

  • Tabata H (2004) Paclitaxel production by plant-cell-culture technology. Adv Biochem Eng Biotechnol 87:1–23

    CAS  PubMed  Google Scholar 

  • Veeresham C (2012) Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res 3(4):200–201

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Volgin VN, Stranadko EF, Kagoyants RV (2014) The results of the treatment of various morphological types of ENT skin cancer by photodynamic therapy. Saratov J Med Sci Res 10(3):555–558

    Google Scholar 

  • Wall ME, Wani MC (1996) Camptothecin and taxol: from discovery to clinic. J Ethnopharmacol 51:239–254

    CrossRef  CAS  PubMed  Google Scholar 

  • Wang H, Khor TO, Shu L, Su Z, Fuentes F, Lee JH, Kon ANT (2012) Plants against cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anti Cancer Agents Med Chem 12(10):1281–1305

    CrossRef  CAS  Google Scholar 

  • Wani M, Taylor H, Wall M, Coggon P, McPhail A (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2357

    CrossRef  CAS  PubMed  Google Scholar 

  • Weeks JC, Uno H, Taback N et al (2014) Interinstitutional Variation in management decisions for treatment of 4 common types of cancer: a multi-institutional cohort study. Ann Intern Med 161(1):20–30

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wicremesinhe ERM, Arteca RN (1993) Taxus callus cultures: initiation, growth optimization, characterization and taxol production. Plant Cell Tissue Organ Cult 35:181–193

    CrossRef  Google Scholar 

  • Witterland AH, Koks CH, Beijnen JH (1996) Etoposide phosphate, the water soluble prodrug of etoposide. Pharm World Sci 18:163–170

    CrossRef  CAS  PubMed  Google Scholar 

  • World Health Organization (2015) Cancer 2015. http://www.who.int/mediacentre/factsheets/fs297/en/. Accessed 20 Sep 2016

  • Xue W, Chen S, Hao Y et al (2014) CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514:380–384

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki M, Asano T, Yamazaki Y, Sirikantaramas S, Sudo H, Saito K (2010) Biosynthetic system of camptothecin: an anticancer plant product. Pure Appl Chem 82(1):213–218

    CrossRef  CAS  Google Scholar 

  • Yang EB, Wang Y, Zang HJ, Li ZM, Liu XH (2016) Accumulation effects of 3-N-benzyloxycarbonyl-aminobutyric salicylate on alkaloids in Catharanthus roseus cells. Lett Drug Des Discov 13(2):117–120

    CrossRef  CAS  Google Scholar 

  • Zhou BN, Hoch JM, Johnson RK, Mattern MR, Eng WK, Ma J, Hecht SM, Newman DJ, Kingston DGI (2000) Use of COMPARE analysis to discover new natural product drugs: isolation of camptothecin and 9-methoxycamptothecin from a new source. J Nat Prod 63:1273–1276

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhou P, Yang J, Zhu J et al (2015) Effects of β-cyclodextrin and methyl jasmonate on the production of vindoline, catharanthine, and ajmalicine in Catharanthus roseus cambial meristematic cell cultures. Appl Microbiol Biotechnol 99:7035–7045

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhu X, Wu BJ, Luo HW, Tao L, Zhao Q, Guo QL, Wu CX (2010) Preparation of solid inclusion complex of deoxypodophyllotoxin-sbe-β-cd and its antitumor activity. J China Pharm Univ 41:447–450

    CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge the Foundation for the Support of Research, Scientific, and Technological Development of the state of Maranhão—FAPEMA for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Denise Fernandes Coutinho Moraes or Sonia Malik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Moraes, D.F.C., de Mesquita, L.S.S., do Amaral, F.M.M., de Sousa Ribeiro, M.N., Malik, S. (2017). Anticancer Drugs from Plants. In: Malik, S. (eds) Biotechnology and Production of Anti-Cancer Compounds . Springer, Cham. https://doi.org/10.1007/978-3-319-53880-8_5

Download citation