Anticancer Drugs from Plants

  • Denise Fernandes Coutinho Moraes
  • Ludmilla Santos Silva de Mesquita
  • Flavia Maria Mendonça do Amaral
  • Maria Nilce de Sousa Ribeiro
  • Sonia Malik
Chapter

Abstract

Cancer is a major problem of public health and one of the main causes of death around the globe. According to World Health Organization, the prevalence of this disease is rising, however, more rapidly in Africa, Asia, and Central and South America that account for about 70% of cancer deaths in the world. The chemotherapy is one of the ways to treat this disease and the advances in anticancer drugs have improved patient care. Plants have been used to treat different diseases since ancient times. Among the anticancer drugs, about 50% come from natural products as isolated or semisynthetic or related synthetic compounds and plants represent important source of these substances. Taxol, vinca alkaloids, camptothecin, and podophyllotoxins, as well as their semisynthetic or synthetic derivatives, are the most important anticancer drugs obtained from plants. In this chapter, we review the importance of plants as source of drugs and describe these anticancer compounds. The continuing search for antitumor agents from plants is extremely necessary to find the possible ways to have safe and more effective treatment for this health problem.

Keywords

Antitumoral compounds Medicinal plants Neoplasm Taxol Vinca alkaloids 

Notes

Acknowledgments

Authors would like to acknowledge the Foundation for the Support of Research, Scientific, and Technological Development of the state of Maranhão—FAPEMA for financial support.

References

  1. Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine FN, Rosenthal PJ, D’Alessandro U (2011) Quinine, an old antimalarial drug in a modern world: role in the treatment of malaria. Malar J 1(10):1–14Google Scholar
  2. Adamovics JA, Cina JA, Hutchinson CR (1979) Minor alkaloids of Camptotheca acuminate. Phytochemistry 18:1085–1086CrossRefGoogle Scholar
  3. Aiyama R, Nagai H, Nokata K, Shinohara C, Sawada S (1988) A camptothecin derivative from Notapodytes foetida. Phytochemistry 27:3663–3664CrossRefGoogle Scholar
  4. Arisawa M, Gunasekera SP, Cordell GA, Farnsworth NR (1981) Plant anticancer agents XXI. Constituents of Merrilliodendron megacarpum. Planta Med 43:404–407PubMedCrossRefGoogle Scholar
  5. BioNap (2016) Oasmia pharmaceuticals—advancing nanotechnology based chemotherapies. http://www.bionapcfa.com/2016/03/oasmia-pharmaceuticals-advancing.html. Accessed 24 Nov 2016
  6. Bohlin L, Rositn B (1996) Podophyllotoxin derivatives: drug discovery and development. Drug Discov Today 1:343–351CrossRefGoogle Scholar
  7. Borah JC, Gogoi S, Boruwa J, Kalita B, Barua NC (2004) A highly efficient synthesis of the C-13 side-chain of taxol using Shibasaki’s asymmetric Henry reaction. Tetrahedron Lett 45(18):3689–3691CrossRefGoogle Scholar
  8. Botta B, Delle Monache G, Misiti D, Vitali A, Zappia G (2001) Aryltetralin lignans: chemistry, pharmacology and biotransformations. Curr Med Chem 8:1363–1381PubMedCrossRefGoogle Scholar
  9. Brandão HN, Medrado HHS, David JP, David JM, Pastore JFB, Meira M (2017) Determination of podophyllotoxin and related aryltetralin lignans by HPLC/DAD/MS from Lamiaceae species. Microchem J 130:179–184CrossRefGoogle Scholar
  10. Brewer CF, Loike JD, Horwitz SD, Sternlicht H, Gensler WJ (1979) Conformational analysis of podophyllotoxin and its congeners. Structure—activity relationship in microtubule assembly. J Med Chem 22:215–221PubMedCrossRefGoogle Scholar
  11. Cantrell CL, Zheljazkov VD, Osbrink WLA, Castro A, Maddox V, Craker LE, Astatkie T (2013) Podophyllotoxin and essential oil profile of Juniperus andrelated species. Ind Crop Prod 43:668–676CrossRefGoogle Scholar
  12. Chattopadhyay S, Srivastava AK, Bhojwani SS, Bisaria VS (2002) Production of podophyllotoxin by plant cell cultures of Podophyllum hexandrum in bioreactor. J Biosci Bioeng 93:215–220PubMedCrossRefGoogle Scholar
  13. Cope EA (1998) Taxaceae: the genera and cultivated species. Bot Rev 64:291–322CrossRefGoogle Scholar
  14. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cui LJ, Ni XL, Ji Q, Teng XJ, Yang YR, Wu C, Zekria D et al (2015) Co-overexpression of geraniol-10-hydroxylase and strictosidine synthase improves anti-cancer drug camptothecin accumulation in Ophiorrhiza pumila. Sci Rep 5:8227PubMedPubMedCentralCrossRefGoogle Scholar
  16. Dahmke IN, Boettcher SP, Groh M, Mahlkecht U (2014) Cooking enhances curcumin anti-cancerogenic activity through pyrolytic formation of deketene curcumin. Food Chem 151:514–519PubMedCrossRefGoogle Scholar
  17. Dai JR, Cardellina JH, Boyd MR (1999) 20-Ob-Glucopyranosyl camptothecin from Mostuea brunonis: a potential camptothecin pro-drug with improved solubility. J Nat Prod 62:1427–1429PubMedCrossRefGoogle Scholar
  18. Dall’Acqua S (2014) Natural products as antimitotic agents. Curr Top Med Chem 14:2272–2285PubMedCrossRefGoogle Scholar
  19. Davis C, Fanning K, Trueman S, Williams D (2011) Growing the Chinese happy tree (Xi Shu) in Australia-maximising the extraction of the anti-cancer compound camptothecin. RIRDC Publication, AustraliaGoogle Scholar
  20. de Sa IM (2011) Chloroquine resistance and the search for antimalarial drugs from the 1960s to 1980s. Hist Cienc Saude Manguinhos 18(2):407–430PubMedCrossRefGoogle Scholar
  21. de Sant’Ana RS, de Castro Mattos JS, da Silva AS, de Mello LM, Nunes AA (2016) Associated factors with mammographic changes in women undergoing breast cancer screening. Einstein 14(3):324–329PubMedPubMedCentralCrossRefGoogle Scholar
  22. Denis JN, Greene AE, Guenard D, Gueritte-Voegelein F, Mangatal L, Potier P (1988) Highly efficient, practical approach to natural taxol. J Am Chem Soc 110(17):5917–5919CrossRefGoogle Scholar
  23. Doussot J, Mathieu V, Colas C, Molinie R, Corbin C, Montguillon J, Moreno Y, Banuls L, Renouard S, Lamblin F, Dupre P (2016) Investigation of the lignan content in extracts from Linum, Callitris and Juniperus species in relation to their in vitro antiproliferative ctivities. Planta Med. doi: 10.1055/s-0042-118711 PubMedGoogle Scholar
  24. Du Y, Kong G, You X et al (2012) Elevation of highly up-regulated in liver cancer (HULC) by hepatitis B virus X protein promotes hepatoma cell proliferation via down-regulating p18. J Biol Chem 287(31):26302–26311PubMedPubMedCentralCrossRefGoogle Scholar
  25. Expósito O, Bonfill M, Moyano E, Onrubia M, Mirjalili MH, Cusido RM, Palazón J (2009) Biotechnological production of taxol and related taxoids: current state and prospects. Anti Cancer Agents Med Chem 9:109–121CrossRefGoogle Scholar
  26. Fassberg J, Stella VJ (1992) A kinetic and mechanistic study of the hydrolysis of camptothecin and some analogues. J Pharm Sci 81(7):676–684PubMedCrossRefGoogle Scholar
  27. Fauzee NJS, Dong Z, Wang YL (2011) Taxanes: promising anti-cancer drugs. Asian Pac J Cancer Prev 12:837–851PubMedGoogle Scholar
  28. Federolf K, Alfermann AW, Fuss E (2007) Aryltetralin-lignan formation in two different cell suspension cultures of Linum album: deoxypodophyllotoxin 6-hydroxylase, a key enzyme for the formation of 6-methoxypodophyllotoxin. Phytochemistry 68:1397–1406PubMedCrossRefGoogle Scholar
  29. Fett-Neto AG, DiCosmo F, Reynolds WF, Sakata K (1992) Cell culture of Taxus as a source of the antineoplastic drug taxol and related taxanes. Bio/Technology 10:1572–1576PubMedCrossRefGoogle Scholar
  30. Fonseca JDS, Farías RAQ (2016) Obesity and cancer: pathophysiology and epidemiological evidence. Rev Med Ris 22(2):91–97Google Scholar
  31. Frense D (2007) Taxanes: perspectives for biotechnological production. Appl Microbiol Biotechnol 73:1233–1240PubMedCrossRefGoogle Scholar
  32. Futreal PA, Coin L, Marshall M et al (2004) A census of human genes. Nat Rev Cancer 4(3):177–183PubMedPubMedCentralCrossRefGoogle Scholar
  33. Garawal T (2016) Taxus: an endangered genus. Int J Agr Sci Res 6(2):175–178Google Scholar
  34. Garcia-Carbonero R, Supko J (2002) Current perspectives on the clinical experience, pharmacology, and continued development of the camptothecins. Clin Cancer Res 8:641–661PubMedGoogle Scholar
  35. Gelderblom H, Verweij J, Nooter K, Sparreboom A (2001) Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 37(13):1590–1598PubMedCrossRefGoogle Scholar
  36. Gensler WJ, Gatsonis CD (1966) Synthesis of podophyllotoxin. J Organomet Chem 31:4004–4008CrossRefGoogle Scholar
  37. Giachetti D, Monti L (2005) Medicinal plant in phytotherapy. Ann Ist Super Sanita 41(1):17–22PubMedGoogle Scholar
  38. Golberg DR (2009) Aspirin: turn of the century miracle drug. https://www.chemheritage.org/distillations/magazine/aspirin-turn-of-the-century-miracle-drug. Accessed 30 Sep 2016
  39. Gordaliza M, Garcia PA, Miguel del Corral JM, Castro MA, Gomez-Zurita MA (2004) Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon 44:441–459PubMedCrossRefGoogle Scholar
  40. Goss A (2014) Building the world’s supply of quinine: Dutch colonialism and the origins of a global pharmaceutical industry. Endeavour 38(1):8–18PubMedCrossRefGoogle Scholar
  41. Gottlieb JA, Luce JK (1972) Treatment of malignant melanoma with camptothecin (NSC-100880). Cancer Chemother Rep 56(1):103–105PubMedGoogle Scholar
  42. Gunasekera SP, Badawi MM, Cordell GA, Farnsworth NR, Chitnis M (1979) Plant anticancer agents X. Isolation of camptothecin and 9-methoxycamptothecin from Ervatamia heyneana. J Nat Prod 42:475–477PubMedCrossRefGoogle Scholar
  43. Gupta D (2015) An overview of taxus. J Drug Discov Therap BP 3(29):1–7Google Scholar
  44. Haaz MC, Rivory L, Riché C, Vernillet L, Robert J (1998) Metabolism of irinotecan (CPT-11) by human hepatic microsomes: participation of cytochrome P-450 3A and drug interactions. Cancer Res 58:468–472PubMedGoogle Scholar
  45. Hamamoto H, Mamedov VA, Kitamoto M, Hayashi N, Tsuboi S (2000) Chemoenzymatic synthesis of the C-13 side chain of paclitaxel (Taxol) and docetaxel (Taxotere). Tetrahedron Asymmetry 11(22):4485–4497CrossRefGoogle Scholar
  46. Hartmann JT, Lipp H-P (2006) Camptothecin and podophyllotoxin derivatives inhibitors of topoisomerase I and II—mechanisms of action, pharmacokinetics and toxicity profile. Drug Saf 29(3):209–230PubMedCrossRefGoogle Scholar
  47. Hartwell JL, Schrecker AW (1951) Components of podophyllin. V. The constitution of podophyllotoxin. J Am Chem Soc 73:2909–2916CrossRefGoogle Scholar
  48. Herzog TJ (2002) Update on the role of topotecan in the treatment of recurrent ovarian cancer. Oncologist 7(Suppl. 5):3–10PubMedCrossRefGoogle Scholar
  49. Holgado E, Perez M, Wren A, Cortes J, Gomez-Pinillo A (2015) Influencing cancer treatment. Lancet Oncol 16:1591–1593PubMedCrossRefGoogle Scholar
  50. Holton RA, Somoza C, Kim HB (1994) First total synthesis of Taxol. L Functionalization of the B ring. J Am Chem Soc 116:1597–1560CrossRefGoogle Scholar
  51. Hoogte ARVD, Pieters T (2014) Science in the service of colonial agro-industrialism: the case of cinchona cultivation in the Dutch and British East Indies, 1852–1900. Stud Hist Phil Biol Biomed Sci 47:12–22CrossRefGoogle Scholar
  52. Horwitz SB (1994) Taxol (paclitaxel): mechanisms of action. Ann Oncol 5(Suppl 6):S3–S6PubMedGoogle Scholar
  53. Hsiang Y-H, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260:14873–14878PubMedGoogle Scholar
  54. Hsiang Y-H, Lihou MG, Liu LF (1989) Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res 49:5077–5082PubMedGoogle Scholar
  55. Humerickhouse R, Lohrbach K, Li L, Bosron W, Dolan ME (2000) Characterization of CPT-11 hydrolysis by human liver carboxylesterase isoforms hCE-1 and hCE-2. Cancer Res 60:1189–1192PubMedGoogle Scholar
  56. Huxtable RJ, Schwarz KV (2001) The isolation of morphine: first principles in science and ethics. Mol Interv 14:189–191Google Scholar
  57. Imbert TF (1998) Discovery of podophyllotoxins. Biochimie 80:207–222PubMedCrossRefGoogle Scholar
  58. Kai GY, Dai LM, Mei XY, Zheng JG, Wang W, Lu Y, Qian ZY, Zhou GY (2008) In vitro plant regeneration from leaf explants of Ophiorrhiza japonica. Biol Plant 52(3):557–560CrossRefGoogle Scholar
  59. Kai GY, Li SS, Wang W, Lu Y, Wang J, Liao P, Cui LJ (2013) Molecular cloning and expression analysis of a new gene encoding 3-hydroxy-3-methylglutaryl-CoA synthase from Camptotheca acuminata. Russ J Plant Physiol 60(1):131–138CrossRefGoogle Scholar
  60. Kai GY, Teng XJ, Cui LJ, Li SS, Hao XL, Shi M, Yan B (2014) Effect of three plant hormone elicitors on the camptothecin accumulation and gene transcript profiling in Camptotheca acuminata seedlings. Inter J Sci 3(1):86–95Google Scholar
  61. Kai G, Wu C, Gen L, Zhang L, Cui L, Ni X (2015) Biosynthesis and biotechnological production of anti-cancer drug Camptothecin. Phytochem Rev 14:525–539CrossRefGoogle Scholar
  62. Kaplan IW (1942) Condyloma acuminate. New Orleans Med Surg J 94:388–390Google Scholar
  63. Karuppaiya P, Tsay HS (2015) Therapeutic values, chemical constituents and toxicity of Taiwanese Dysosma pleiantha—a review. Toxicol Lett 236:90–97PubMedCrossRefGoogle Scholar
  64. Khaled M, Jiang ZZ, Zhang LY (2013) Deoxypodophyllotoxin: a promising therapeutic agent from herbal medicine. J Ethnopharmacol 149:24–34PubMedCrossRefGoogle Scholar
  65. Khaled M, Belaaloui G, Jiang Z-Z, Zhu X, Zhang L-Y (2016) Antitumor effect of deoxypodophyllotoxin on human breast cancer xenograft transplanted in BALB/c nude mice model. J Infect Chemother 22:692–696PubMedCrossRefGoogle Scholar
  66. Kim YK, Koo NY, Yun PY (2015) Anticancer effects of CKD-602 (Camtobell®) via G2/M phase arrest in oral squamous cell carcinoma cell lines. Oncol Lett 9(1):136–142PubMedGoogle Scholar
  67. King IS, Sullivan M (1946) The similarity of the effects of podophyllotoxin and colchicine and their use of in treatment Condyloma acuminate. Science 104:244–245CrossRefGoogle Scholar
  68. Kinsley-Scott TR, Norton SA (2003) Useful plants of dermatology. VII: cinchona and antimalarials. J Am Acad Derma 49(3):499–502CrossRefGoogle Scholar
  69. Koskinen AMP, Karvinen EK, Siirila JP (1994) Enantioselective synthesis of the Taxol and Taxotere side chains. J Chem Soc Chem Commun 1:21–22CrossRefGoogle Scholar
  70. Kruczynski A, Hill BT (2001) Vinflunine, the latest Vinca alkaloid in clinical development: a review of its preclinical anticancer properties. Crit Rev Oncol Hematol 40:159–173PubMedCrossRefGoogle Scholar
  71. Labreche F, Duguay P, Boucher A, Arcand R (2014) Estimating the proportion of occupational câncer with minimal resources: an example from Quebec. Occup Environ Med 71(6):A90Google Scholar
  72. Li S, Yi Y, Wang Y, Zhang Z, Beasley RS (2002) Camptothecin accumulation and variations in Camptotheca. Planta Med 68:1010–1016PubMedCrossRefGoogle Scholar
  73. Liu WC, Gonga T, Zhu P (2016) Advances in exploring alternative Taxol sources. RSC Adv 6:48800–48809CrossRefGoogle Scholar
  74. López-Meyer M, Nessler CL, McKnight TD (1994) Sites of accumulation of the antitumor alkaloid camptothecin in Camptotheca acuminata. Planta Med 60:558–560PubMedCrossRefGoogle Scholar
  75. Lorence A, Nessler CL (2004) Camptothecin, over four decades of surprising findings. Phytochemistry 65:2735–2749PubMedCrossRefGoogle Scholar
  76. Mahdi JG, Mahdi AJ, Mahdi AJ, Bowen ID (2006) The historical analysis of aspirin discovery, its relation to the willow tree and antiproliferative and anticancer potential. Cell Prolif 39:147–155PubMedCrossRefGoogle Scholar
  77. Malik S, Cusido RM, Mirjalili MH, Moyano E, Palazon J, Bonfill M (2011) Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem 46:23–34CrossRefGoogle Scholar
  78. Malik S, Mirjalili MH, Fett-Neto A, Mazzafera P, Bonfill M (2013) Living between two worlds: two-phase culture systems for producing plant secondary metabolites. Crit Rev Biotechnol 33(1):1–22PubMedCrossRefGoogle Scholar
  79. Malik S, Bhushan S, Sharma M, Ahuja PS (2014a) Biotechnological approaches to the production of shikonins: a critical review with recent updates. Crit Rev Biotechnol 16:1–14Google Scholar
  80. Malik S, Biba O, Gruz J, Arroo RRJ, Strnad M (2014b) Biotechnological approaches for producing aryltetralin lignans from Linum species. Phytochem Rev 13:893–913CrossRefGoogle Scholar
  81. Malonne H, Atassi G (1997) DNA topoisomerase targeting drugs: mechanisms of action and perspectives. Anti-Cancer Drugs 8:811–822PubMedCrossRefGoogle Scholar
  82. Marrelli M, Conforti F, Statti GA, Cachet X, Michel S, Tillequin F, Menichini F (2011) Biological potential and structure activity relationships of most recently developed vascular disrupting agents: an overview of new derivatives of natural combretastatin A-4. Curr Med Chem 18:3035–3081PubMedCrossRefGoogle Scholar
  83. Mathijssen RHJ, van Alphen RJ, Verweij J, Loos WL, Nooter K, Stoter G, Sparreboom A (2001) Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res 7:2182–2196PubMedGoogle Scholar
  84. McWhirter JE, Hoffman-Goetz L (2016) Coverage of skin cancer risk factors and UV behaviors in popular U.S. magazines from 2000 to 2012. J Cancer Educ 31:382–388PubMedCrossRefGoogle Scholar
  85. Moertel CG, Schutt AJ, Reitemeier RJ, Hahn RG (1972) Phase II study of camptothecin (NSC-100880) in the treatment of advanced gastrointestinal cancer. Cancer Chemother Rep 56(1):95–101PubMedGoogle Scholar
  86. Mojica MA, Leon A, Rojas-Sepulveda AM, Marquina S, Mendieta-Serrano MA, Salas-Vidal E, Villarreal ML, Alvarez L (2016) Aryldihydronaphthalene-type lignans from Bursera fagaroides var. fagaroides and their antimitotic mechanism of action. RSC Adv 6:4950–4959CrossRefGoogle Scholar
  87. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335PubMedPubMedCentralCrossRefGoogle Scholar
  88. Ni XL, Wen SQ, Wang W, Wang XY, Xu H, Kai GY (2011) Enhancement of camptothecin production in Camptotheca acuminata hairy roots by overexpressing ORCA3 gene. J Appl Pharm Sci 1(8):85–88Google Scholar
  89. Nicolau KC, Yang Z, Liu JJ, Ueno H, Nantermet PG, Guy RK, Clairborne CF et al (1994) Total synthesis of taxol. Nature 367:630–634CrossRefGoogle Scholar
  90. Noble RL (1990) The discovery of the vinca alkaloid schemo therapeutic agents against cancer. Biochem Cell Biol 68:1344–1351PubMedCrossRefGoogle Scholar
  91. O’Neill PM, Posner GH (2004) A medicinal chemistry perspective on artemisinin and related endoperoxides. J Med Chem 47:2945–2964PubMedCrossRefGoogle Scholar
  92. Patridge E, Gareiss P, Kinch MS, Hoyer D (2016) An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discovery Today 21(2):204–207Google Scholar
  93. Pazdur R (2013) Cancer drug information. http://www.cancer.gov/cancertopics/druginfo/fda-nanoparticle-paclitaxel. Accessed 24 Nov 2016
  94. Peña-Morán OA, Villarreal ML, Álvarez-Berber L, Meneses-Acosta A, Rodríguez-López V (2016) Cytotoxicity, post-treatment recovery, and selectivity analysis of naturally occurring podophyllotoxins from Bursera fagaroides var. fagaroides on breast cancer cell lines. Molecules 21:1013–1028CrossRefGoogle Scholar
  95. Petter M (2015) Shining a spotlight on occupational cancers. Safet Health Pract 33(10):8Google Scholar
  96. Pettit GR, Searcy JD, Tan R, Cragg GM, Melody N, Knight JC, Chapuis J-C (2016) Antineoplastic Agents. 585. Isolation of Bridelia ferruginea anticancer podophyllotoxins and synthesis of 4-Aza-podophyllotoxin structural modifications. J Nat Prod 79:507–518PubMedCrossRefGoogle Scholar
  97. Pizzolato LBS (2003) The camptothecins. Lancet 361:2235–2242PubMedCrossRefGoogle Scholar
  98. Polovich M, Olsen M, LeFebvre K (2014) Chemotherapy and biotherapy guidelines and recommendations for practices. Oncology Nursing Society, PittsburgGoogle Scholar
  99. Qazi PH, Rashid A, Shaw SA (2011) Podophyllum hexandrum—a versatile medicinal plant. Int J Pharm Pharm Sci 3:261–268Google Scholar
  100. Rahmani A, Adebasis YA, ALY S (2015) Role of green tea and its constituent epigallocatechin-3-gallate in the health management. Int J Pharm Pharm Sci 7(3):6–12Google Scholar
  101. Rao Y, Zhang D, Li R (2015) Tu Youyou and the discovery of artemisinin: 2015 nobel laureate in physiology or medicine. World Scientific, LondonGoogle Scholar
  102. Renouard S, Corbina C, Colas C, Fidel T, Lopez T, Leclerc EA, Hendrawati O, Falguières A, Doussot J, Ferroud C, Maunit B, Lainé E, Hano C (2015) Aerial parts of Callitris species as a rich source of deoxypodophyllotoxin. Ind Crop Prod 63:53–57CrossRefGoogle Scholar
  103. Rodrigues DE, Moreira KFA, Oliveira TS (2016) Barriers to prevention of cervical cancer in the city of Porto Velho, Rondônia, Brazil. Invest Educ Enferm 34(1):58–66Google Scholar
  104. Rowinsky EK (1994) Update on the antitumor activity of paclitaxel in clinical trials. Ann Pharmacother 28(5 Suppl):S18–S22PubMedCrossRefGoogle Scholar
  105. Rowinsky EK, Onetto N, Canetta RM, Arbuck SG (1992) Taxol: the first of the taxanes, an important new class of antitumor agents. Semin Oncol 19(6):646–662PubMedGoogle Scholar
  106. Saito K, Sudo H, Yamazaki M, Koseki-Nakamura M, Kitajima M, Takayama H, Aimi N (2001) Feasible production of camptothecin by hairy root culture of Phiorrhiza pumila. Plant Cell Rep 20:267–271CrossRefGoogle Scholar
  107. Salim V, de Luca V (2013) Towards complete elucidation of monoterpene indole alkaloid biosynthesis pathway: Catharanthus roseus as a pioneer system. In: New light on alkaloid biosynthesis and prospects, 1st edn. Elsevier, London.Google Scholar
  108. Schacter L (1996) Etoposide phosphate: what, why, where, and how? Semin Oncol 23:1–7PubMedGoogle Scholar
  109. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 22:665–666CrossRefGoogle Scholar
  110. Schippmann U (2001) Medicinal plants significant trade study (CITES Project S-109). German Federal Agency for Nature Conservation, BonnGoogle Scholar
  111. Seidlova-Massinova V, Santavy M, Santavy J (1957) The biological effect of some podophyllotoxin compounds and their dependence on chemical structure. J Natl Cancer Inst 18:359–369Google Scholar
  112. Sena JS, Girão RJS, Figueiredo SM et al (2016) Occupational skin cancer: systematic review. Rev Assoc Med Bras 62(3):280–286PubMedCrossRefGoogle Scholar
  113. Shankari V, Gurunathan S (2015) Drug discovery: an appraisal. Int J Pharm Pharm Sci 7(4):59–66Google Scholar
  114. Singh J, Shah NC (1994) Podophyllum: a review. Curr Res Med Arom Plants 16:53–83Google Scholar
  115. Singla AK, Garg A, Aggarwal D (2002) Paclitaxel and its formulations. Int J Pharm 235(1–2):179–192PubMedCrossRefGoogle Scholar
  116. Sirikantaramas S, Asano T, Sudo H, Yamazaki M, Saito K (2007) Camptothecin: therapeutic potential and biotechnology. Curr Pharm Biotechnol 8:196–202PubMedCrossRefGoogle Scholar
  117. Slichenmyer W, Rowinsky EK, Donehower RC, Kaufmann SH (1993) The current status of camptothecin analogues as antitumor agents. J Natl Cancer Inst 85:271–291PubMedCrossRefGoogle Scholar
  118. Stähelin HF, von Wartburg A (1991) The chemical and biological route from podophyllotoxin glucoside to etoposide: ninth cain memorial award lecture. Cancer Res 51:5–15PubMedGoogle Scholar
  119. Sterwart BW, Wild CP (2014) World cancer report 2014. http://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-Cancer-Report-2014. Accessed 25 Sep 2016
  120. Tabata H (2004) Paclitaxel production by plant-cell-culture technology. Adv Biochem Eng Biotechnol 87:1–23PubMedGoogle Scholar
  121. Veeresham C (2012) Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res 3(4):200–201PubMedPubMedCentralCrossRefGoogle Scholar
  122. Volgin VN, Stranadko EF, Kagoyants RV (2014) The results of the treatment of various morphological types of ENT skin cancer by photodynamic therapy. Saratov J Med Sci Res 10(3):555–558Google Scholar
  123. Wall ME, Wani MC (1996) Camptothecin and taxol: from discovery to clinic. J Ethnopharmacol 51:239–254PubMedCrossRefGoogle Scholar
  124. Wang H, Khor TO, Shu L, Su Z, Fuentes F, Lee JH, Kon ANT (2012) Plants against cancer: a review on natural phytochemicals in preventing and treating cancers and their druggability. Anti Cancer Agents Med Chem 12(10):1281–1305CrossRefGoogle Scholar
  125. Wani M, Taylor H, Wall M, Coggon P, McPhail A (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2357PubMedCrossRefGoogle Scholar
  126. Weeks JC, Uno H, Taback N et al (2014) Interinstitutional Variation in management decisions for treatment of 4 common types of cancer: a multi-institutional cohort study. Ann Intern Med 161(1):20–30PubMedPubMedCentralCrossRefGoogle Scholar
  127. Wicremesinhe ERM, Arteca RN (1993) Taxus callus cultures: initiation, growth optimization, characterization and taxol production. Plant Cell Tissue Organ Cult 35:181–193CrossRefGoogle Scholar
  128. Witterland AH, Koks CH, Beijnen JH (1996) Etoposide phosphate, the water soluble prodrug of etoposide. Pharm World Sci 18:163–170PubMedCrossRefGoogle Scholar
  129. World Health Organization (2015) Cancer 2015. http://www.who.int/mediacentre/factsheets/fs297/en/. Accessed 20 Sep 2016
  130. Xue W, Chen S, Hao Y et al (2014) CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514:380–384PubMedPubMedCentralCrossRefGoogle Scholar
  131. Yamazaki M, Asano T, Yamazaki Y, Sirikantaramas S, Sudo H, Saito K (2010) Biosynthetic system of camptothecin: an anticancer plant product. Pure Appl Chem 82(1):213–218CrossRefGoogle Scholar
  132. Yang EB, Wang Y, Zang HJ, Li ZM, Liu XH (2016) Accumulation effects of 3-N-benzyloxycarbonyl-aminobutyric salicylate on alkaloids in Catharanthus roseus cells. Lett Drug Des Discov 13(2):117–120CrossRefGoogle Scholar
  133. Zhou BN, Hoch JM, Johnson RK, Mattern MR, Eng WK, Ma J, Hecht SM, Newman DJ, Kingston DGI (2000) Use of COMPARE analysis to discover new natural product drugs: isolation of camptothecin and 9-methoxycamptothecin from a new source. J Nat Prod 63:1273–1276PubMedCrossRefGoogle Scholar
  134. Zhou P, Yang J, Zhu J et al (2015) Effects of β-cyclodextrin and methyl jasmonate on the production of vindoline, catharanthine, and ajmalicine in Catharanthus roseus cambial meristematic cell cultures. Appl Microbiol Biotechnol 99:7035–7045PubMedCrossRefGoogle Scholar
  135. Zhu X, Wu BJ, Luo HW, Tao L, Zhao Q, Guo QL, Wu CX (2010) Preparation of solid inclusion complex of deoxypodophyllotoxin-sbe-β-cd and its antitumor activity. J China Pharm Univ 41:447–450Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Denise Fernandes Coutinho Moraes
    • 1
  • Ludmilla Santos Silva de Mesquita
    • 1
  • Flavia Maria Mendonça do Amaral
    • 1
  • Maria Nilce de Sousa Ribeiro
    • 1
  • Sonia Malik
    • 2
  1. 1.Department of PharmacyBiological and Health Sciences Center, Federal University of MaranhãoSão LuísBrazil
  2. 2.Graduate Program in Health SciencesBiological and Health Sciences Center, Federal University of MaranhãoSão LuísBrazil

Personalised recommendations