Cancer and Biotechnology: A Matchup that Should Never Slowdown

  • Ala’a Al-Hrout
  • Badriya Baig
  • Ali Hilal-Alnaqbi
  • Amr Amin


Plant-based treatments propose a very attractive approach for cancer prevention and therapy due to their minimal toxicity and lower-to-nonassociated side effects. About 40% of FDA-approved therapeutic agents are natural-based components or their derivatives. Plant-based components have been reported to have anticancer properties in vivo and in vitro through the modulation of many cancer hallmarks and niche elements, including self-renewal properties of cancer stem cells. Screening for anticancer agents, synthetic or natural-based, requires a reliable disease model. Efforts to mimic in vivo conditions have led to the development of three-dimensional culture system, a biotechnology that allows cells to grow in three dimensions. Nanotechnology is also fast growing into a quite powerful tool to improve quality of life, particularly the life of cancer patients. Clearing away most hurdles that conventional/herbal medicine is often challenged with, nanotechnology can potentially help delivering anticancer herbal drugs more specifically and efficiently. Given the rather gloomy reality of cancer, nanomedicine becomes the major silver lining. A number of successful conjugates of nanoparticle with herbal products are discussed in this chapter.


Plant-derived nanoparticles Cancer stem cells Nanomedicine 3D-culture system Molecular docking 



This work was supported by ZCHS Grant 31R050.


  1. Akiyama T (2000) Wnt/beta-catenin signaling. Cytokine Growth Factor Rev 11:273–282PubMedCrossRefGoogle Scholar
  2. Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988. doi: 10.1073/pnas.0530291100 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alibek K, Bekmurzayeva A, Mussabekova A, Sultankulov B (2012) Using antimicrobial adjuvant therapy in cancer treatment: a review. Infect Agents Cancer 7(1):33PubMedPubMedCentralCrossRefGoogle Scholar
  4. Amin A, Bajbouj K, Koch A et al (2015) Defective autophagosome formation in p53-null colorectal cancer reinforces crocin-induced apoptosis. Int J Mol Sci 16:1544–1561PubMedPubMedCentralCrossRefGoogle Scholar
  5. Amin A, Hamza AA, Bajbouj K et al (2011) Saffron: a potential candidate for a novel anticancer drug against hepatocellular carcinoma. Hepatology 54:857–867. doi: 10.1002/hep.24433 PubMedCrossRefGoogle Scholar
  6. Amin A, Hamza A, Daoud S et al (2016) Saffron-based crocin prevents early lesions of liver cancer: in vivo, in vitro and network analyses. Recent Pat Anticancer Drug Discov 11:121–133PubMedCrossRefGoogle Scholar
  7. Anjomshoaa A, Nasri S, Humar B et al (2009) Slow proliferation as a biological feature of colorectal cancer metastasis. Br J Cancer 101:822–828. doi: 10.1038/sj.bjc.6605229 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ansari S, Sameem M, Islam F (2012) Influence of nanotechnology on herbal drugs: a review. J Adv Pharm Technol Res 3(3):142PubMedPubMedCentralCrossRefGoogle Scholar
  9. Astashkina A, Mann B, Prestwich G, Grainger D (2012) A 3-D organoid kidney culture model engineered for high-throughput nephrotoxicity assays. Biomaterials 33(18):4700–4711PubMedCrossRefGoogle Scholar
  10. Astruc D (2015) Intro Nanomed Mol 21(1):4Google Scholar
  11. Baden L, Bensinger W, Angarone M, Casper C, Dubberke E, Freifeld A et al (2012) Prevention and treatment of cancer-related infections. J Natl Compr Canc Netw 10:1412–1445PubMedGoogle Scholar
  12. Bailey D, Brown D (2001) High through-put chemistry and structure-based design. Drug Discov Today 6:57–59PubMedCrossRefGoogle Scholar
  13. Bajorath J (2002) Integration of virtual and high-throughput screening. Nat Rev Drug Discov 1:882–894. doi: 10.1038/nrd941 PubMedCrossRefGoogle Scholar
  14. Bar-Sela G, Epelbaum R, Schaffer M (2010) Curcumin as an anti-cancer agent: review of the gap between basic and clinical applications. Curr Med Chem 17(3):190–197PubMedCrossRefGoogle Scholar
  15. Baudino T (2015) Targeted cancer therapy: the next generation of cancer treatment. Curr Drug Discov Technol 12(1):3–20PubMedCrossRefGoogle Scholar
  16. Bhandari P (2015) Crocus sativus L. (saffron) for cancer chemoprevention: a mini review. J Trad Complement Med 5(2):81–87CrossRefGoogle Scholar
  17. Bisht S, Mizuma M, Feldmann G, Ottenhof N, Hong S, Pramanik D et al (2010) Systemic administration of polymeric nanoparticle-encapsulated curcumin (NanoCurc) blocks tumor growth and metastases in preclinical models of pancreatic cancer. Mol Cancer Ther 9(8):2255–2264PubMedPubMedCentralCrossRefGoogle Scholar
  18. Block K, Gyllenhaal C, Lowe L, Amedei A, Amin A, Amin A et al (2015) Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin Cancer Biol 35:S276–S304PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bohacek RS, McMartin C, Guida WC (1996) The art and practice of structure-based drug design: a molecular modeling perspective. Med Res Rev 16:3–50PubMedCrossRefGoogle Scholar
  20. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737. doi: 10.1038/nm0797-730 PubMedCrossRefGoogle Scholar
  21. Breslin S, O’Driscoll L (2013) Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today 18:240–249. doi: 10.1016/j.drudis.2012.10.003 PubMedCrossRefGoogle Scholar
  22. Cance WG, Harris JE, Iacocca MV et al (2000) Immunohistochemical analyses of focal adhesion kinase expression in benign and malignant human breast and colon tissues: correlation with preinvasive and invasive phenotypes. Clin Cancer Res 6:2417–2423. doi: 10.1073/pnas.89.11.5192 PubMedGoogle Scholar
  23. Cassileth B (1984) Contemporary unorthodox treatments in cancer medicine. Ann Intern Med 101(1):105PubMedCrossRefGoogle Scholar
  24. Cavasotto CN, Orry AJW (2007) Ligand docking and structure-based virtual screening in drug discovery. Curr Top Med Chem 7:1006–1014. doi: 10.2174/156802607780906753 PubMedCrossRefGoogle Scholar
  25. Chen J, Li W, Yao H, Xu J (2015) Insights into drug discovery from natural products through structural modification. Fitoterapia 103:231–241. doi: 10.1016/j.fitote.2015.04.012 PubMedCrossRefGoogle Scholar
  26. Chen Y, Han X-Z, Wang W et al (2014) Withaferin A inhibits osteosarcoma cells through inactivation of Notch-1 signalling. Bangladesh J Pharmacol 9:364–370Google Scholar
  27. Chen X, Zhang H, Fang X (2011) Surgery-induced immunomodulation in breast cancer. J Surg Oncol 103(2):197–197PubMedCrossRefGoogle Scholar
  28. Chien AJ, Moore EC, Lonsdorf AS et al (2009) Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc Natl Acad Sci U S A 106:1193–1198. doi: 10.1073/pnas.0811902106 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cho E, Holback H, Liu K, Abouelmagd S, Park J, Yeo Y (2013) Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm 10(6):2093–2110PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chun Y, Bisht S, Chenna V, Pramanik D, Yoshida T, Hong S et al (2012) Intraductal administration of a polymeric nanoparticle formulation of curcumin (NanoCurc) significantly attenuates incidence of mammary tumors in a rodent chemical carcinogenesis model: implications for breast cancer chemoprevention in at-risk populations. Carcinogenesis 33(11):2242–2249PubMedPubMedCentralCrossRefGoogle Scholar
  31. Das I, Das S, Saha T (2010) Saffron suppresses oxidative stress in DMBA-induced skin carcinoma: a histopathological study. Acta Histochem 112(4):317–327PubMedCrossRefGoogle Scholar
  32. De Jong W, Borm P (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(2):133–149PubMedPubMedCentralCrossRefGoogle Scholar
  33. Delgado A, González-Caballero F, Hunter R, Koopal L, Lyklema J (2007) Measurement and interpretation of electrokinetic phenomena. J Colloid Interface Sci 309(2):194–224PubMedCrossRefGoogle Scholar
  34. Dolfini E, Roncoroni L, Dogliotti E et al (2007) Resveratrol impairs the formation of MDA-MB-231 multicellular tumor spheroids concomitant with ceramide accumulation. Cancer Lett 249:143–147. doi: 10.1016/j.canlet.2006.08.013 PubMedCrossRefGoogle Scholar
  35. Dontu G, Jackson KW, McNicholas E et al (2004) Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 6:R605–R615. doi: 10.1186/bcr920 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dragu DL, Necula LG, Bleotu C et al (2015) Therapies targeting cancer stem cells: current trends and future challenges. World J Stem Cells 7:1185–1201. doi: 10.4252/wjsc.v7.i9.1185 PubMedPubMedCentralGoogle Scholar
  37. Dubey R (2014) Advanced biotechnology. S Chand, New DelhiGoogle Scholar
  38. Ehrlich P (1960) Experimental researches on specific therapy: on immunity with special reference to the relationship between distribution and action of antigens*: first Harben lecture. Collect Papers Paul Ehrlich 1960:106–117Google Scholar
  39. Eiraku M, Takata N, Ishibashi H et al (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56. doi: 10.1038/nature09941 PubMedCrossRefGoogle Scholar
  40. Eiraku M, Watanabe K, Matsuo-Takasaki M et al (2008) Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic? Signals. Cell Stem Cell 3:519–532. doi: 10.1016/j.stem.2008.09.002 PubMedCrossRefGoogle Scholar
  41. El-Kharrag R, Amin A, Hisaindee S, Greish Y, Karam SM (2017) Development of a therapeutic model of precancerous liver using crocin-coated magnetite nanoparticles. Int J Oncol 50(1):212–222. doi: 10.3892/ijo.2016.3769 PubMedGoogle Scholar
  42. Farahzad J, Samarghandian S, Shoshtari M, Sargolzaei J, Hossinimoghadam H (2014) Anti-tumor activity of safranal against neuroblastoma cells. Pharmacogn Mag 10(38):419CrossRefGoogle Scholar
  43. Festuccia C, Mancini A, Gravina GL et al (2014) Antitumor effects of saffron-derived carotenoids in prostate cancer cell models. Biomed Res Int. doi: 10.1155/2014/135048 Google Scholar
  44. Fortini ME (2009) Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 16:633–647PubMedCrossRefGoogle Scholar
  45. Günther S, Ruhe C, Derikito MG et al (2007) Polyphenols prevent cell shedding from mouse mammary cancer spheroids and inhibit cancer cell invasion in confrontation cultures derived from embryonic stem cells. Cancer Lett 250:25–35. doi: 10.1016/j.canlet.2006.09.014 PubMedCrossRefGoogle Scholar
  46. Gao Z, Zhang L, Sun Y (2012) Nanotechnology applied to overcome tumor drug resistance. J Control Release 162(1):45–55PubMedCrossRefGoogle Scholar
  47. Giaccio M (2004) Crocetin from saffron: an active component of an ancient spice. Crit Rev Food Sci Nutr 44(3):155–172PubMedCrossRefGoogle Scholar
  48. Golubovskaya VM, Cance WG (2007) Focal adhesion kinase and p53 signaling in cancer cells. Int Rev Cytol 263:103–153PubMedCrossRefGoogle Scholar
  49. Grimes C, Margolin DA, Li L (2012) Are cancer stem cells responsible for cancer recurrence? Cell Biol Res Ther 1(1)Google Scholar
  50. Hamza A, Amin A, Daoud S (2008) The protective effect of a purified extract of Withania somnifera against doxorubicin-induced cardiac toxicity in rats. Cell Biol Toxicol 24:63–73. doi: 10.1007/s10565-007-9016-z PubMedCrossRefGoogle Scholar
  51. Hanahan D, Weinberg R (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674PubMedCrossRefGoogle Scholar
  52. Harrison RG (1907) Observations on the living developing nerve fiber. Proc Soc Exp Biol Med 4:140–143. doi: 10.1002/ar.1090010503 CrossRefGoogle Scholar
  53. Ho W, Pham E, Kim J, Ng C, Kim J, Kamei D, Wu B (2010) Incorporation of multicellular spheroids into 3-D polymeric scaffolds provides an improved tumor model for screening anticancer drugs. Cancer Sci 101(12):2637–2643PubMedCrossRefGoogle Scholar
  54. Holback H, Yeo Y (2011) Intratumoral drug delivery with nanoparticulate carriers. Pharm Res 28(8):1819–1830PubMedPubMedCentralCrossRefGoogle Scholar
  55. Ismail HMS (2012) Overexpression of S6 kinase 1 in brain tumours is associated with induction of hypoxia-responsive genes and predicts patients’ survival. J Oncol. doi: 10.1155/2012/416927 PubMedPubMedCentralGoogle Scholar
  56. Jaiswal AS, Marlow BP, Gupta N, Narayan S (2002) Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene 21:8414–8427. doi: 10.1038/sj.onc.1205947 PubMedCrossRefGoogle Scholar
  57. Jessy T (2011) Immunity over inability: the spontaneous regression of cancer. J Nat Sci Biol Med 2(1):43PubMedPubMedCentralCrossRefGoogle Scholar
  58. Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303:1813–1818. doi: 10.1126/science.1096361 PubMedCrossRefGoogle Scholar
  59. Jukes JM, Both SK, Leusink A et al (2008) Endochondral bone tissue engineering using embryonic stem cells. Proc Natl Acad Sci U S A 105:6840–6845. doi: 10.1073/pnas.0711662105 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Jurenka J (2009) Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev 14(2):141–153PubMedGoogle Scholar
  61. Kanakis C, Tarantilis P, Tajmir-Riahi H, Polissiou M (2007) Crocetin, dimethylcrocetin, and safranal bind human serum albumin: stability and antioxidative properties. J Agric Food Chem 55(3):970–977PubMedCrossRefGoogle Scholar
  62. Kawaguchi-Ihara N, Murohashi I, Nara N, Tohda S (2008) Promotion of the self-renewal capacity of human acute leukemia cells by Wnt3A. Anticancer Res 28:2701–2704PubMedGoogle Scholar
  63. Kehat I, Kenyagin-Karsenti D, Snir M et al (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108:407–414. doi: 10.1172/JCI12131 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Khademhosseini A, Eng G, Yeh J, Fukuda J, Blumling J, Langer R, Burdick J (2006) Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment. J Biomed Mater Res A 79A(3):522–532CrossRefGoogle Scholar
  65. Khan NI, Bradstock KF, Bendall LJ (2007) Activation of Wnt/beta-catenin pathway mediates growth and survival in B-cell progenitor acute lymphoblastic leukaemia. Br J Haematol 138:338–348. doi: 10.1111/j.1365-2141.2007.06667.x PubMedCrossRefGoogle Scholar
  66. Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8:387–398. doi: 10.1038/nrc2389 PubMedCrossRefGoogle Scholar
  67. Koduru S, Kumar R, Srinivasan S et al (2010) Notch-1 inhibition by Withaferin-A: a therapeutic target against colon carcinogenesis. Mol Cancer Ther 9:202–210. doi: 10.1158/1535-7163.MCT-09-0771 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Koltuniewicz A (2014) Sustainable process engineering. De Gruyter, BerlinCrossRefGoogle Scholar
  69. Kopan R, Ilagan MXG (2009) The canonical notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kroemer RT (2007) Structure-based drug design: docking and scoring. Curr Protein Pept Sci 8:312–328. doi: 10.2174/138920307781369382 PubMedCrossRefGoogle Scholar
  71. Langer T, Hoffmann RDD (2001) Virtual screening: an effective tool for lead structure discovery? Curr Pharm Des 7:509–527. doi: 10.2174/1381612013397861 PubMedCrossRefGoogle Scholar
  72. Li C, Heidt DG, Dalerba P et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037. doi: 10.1158/0008-5472.CAN-06-2030 PubMedCrossRefGoogle Scholar
  73. Li Y, Wicha MS, Schwartz SJ, Sun D (2011) Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds. J Nutr Biochem 22:799–806PubMedPubMedCentralCrossRefGoogle Scholar
  74. Liao W-T, Ye Y-P, Deng Y-J, Bian X-W, Ding Y-Q (2014) Metastatic cancer stem cells: from the concept to therapeutics. Am J Stem Cells 3(2):46–62PubMedPubMedCentralGoogle Scholar
  75. Lim K, Bisht S, Bar E, Maitra A, Eberhart C (2011) A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biol Ther 11(5):464–473PubMedPubMedCentralCrossRefGoogle Scholar
  76. Liu L, Wise DR, Diehl JA, Simon MC (2008) Hypoxic reactive oxygen species regulate the integrated stress response and cell survival. J Biol Chem 283:31153–31162. doi: 10.1074/jbc.M805056200 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Liu S, Dontu G, Mantle ID et al (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063–6071. doi: 10.1158/0008-5472.CAN-06-0054 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Liu S, Dontu G, Wicha MS (2005) Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res 7:86–95. doi: 10.1186/bcr1021 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Liu W, Shen SM, Zhao XY, Chen GQ (2012) Targeted genes and interacting proteins of hypoxia inducible factor-1. Int J Biochem Mol Biol 3:165–178PubMedPubMedCentralGoogle Scholar
  80. Lokich J (2012) Clinical cancer medicine: treatment tactics. Springer, Boston, MA, p 15Google Scholar
  81. Long X, Fan M, Bigsby RM, Nephew KP (2008) Apigenin inhibits antiestrogen-resistant breast cancer cell growth through estrogen receptor-alpha-dependent and estrogen receptor-alpha-independent mechanisms. Mol Cancer Ther 7:2096–2108. doi: 10.1158/1535-7163.MCT-07-2350 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lu X, Wu D, Li Z, Chen G (2011) Polymer nanoparticles. Prog Mol Biol Transl Sci 104:299–323PubMedCrossRefGoogle Scholar
  83. Lumelsky N, Blondel O, Laeng P et al (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389–1394. doi: 10.1126/science.1058866 PubMedCrossRefGoogle Scholar
  84. Moore N, Lyle S (2011) Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol 2011:396076PubMedCrossRefGoogle Scholar
  85. MacAdam D (2003) Spontaneous regression: cancer and the immune system. Xlibris Corp, Philadelphia, PAGoogle Scholar
  86. Maggi L, Carmona M, Zalacain A, Tomé M, Murcia M, Alonso G (2009) Parabens as agents for improving crocetin esters’ shelf-life in aqueous saffron extracts. Molecules 14(3):1160–1170PubMedCrossRefGoogle Scholar
  87. Maheshwari R, Singh A, Gaddipati J, Srimal R (2006) Multiple biological activities of curcumin: a short review. Life Sci 78(18):2081–2087PubMedCrossRefGoogle Scholar
  88. Malaekeh-Nikouei B, Mousavi S, Shahsavand S, Mehri S, Nassirli H, Moallem S (2013) Assessment of cytotoxic properties of safranal and nanoliposomal safranal in various cancer cell lines. Phytother Res 27(12):1868–1873PubMedCrossRefGoogle Scholar
  89. McNeil S (2011) Characterization of nanoparticles intended for drug delivery. Humana Press, New York, NYCrossRefGoogle Scholar
  90. Meng X-Y, Zhang H-X, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7:146–157. doi: 10.2174/157340911795677602 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Merkus H (2009) Particle size measurements. Springer, DordrechtGoogle Scholar
  92. Moghimi S (2005) Nanomedicine: current status and future prospects. FASEB J 19(3):311–330PubMedCrossRefGoogle Scholar
  93. Moitessier N, Englebienne P, Lee D et al (2008) Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br J Pharmacol 153(Suppl):S7–26. doi: 10.1038/sj.bjp.0707515 PubMedGoogle Scholar
  94. Neeman E, Ben-Eliyahu S (2013) Surgery and stress promote cancer metastasis: new outlooks on perioperative mediating mechanisms and immune involvement. Brain Behav Immun 30:S32–S40PubMedCrossRefGoogle Scholar
  95. Newman DJ, Cragg GM (2016) Natural Products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–662. doi: 10.1021/acs.jnatprod.5b01055 PubMedCrossRefGoogle Scholar
  96. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110. doi: 10.1038/nature05372 PubMedCrossRefGoogle Scholar
  97. Paldino E, Tesori V, Casalbore P et al (2014) Tumor initiating cells and chemoresistance: which is the best strategy to target colon cancer stem cells? Biomed Res Int 2014:859871PubMedPubMedCentralCrossRefGoogle Scholar
  98. Park S, Kim Y-S, Lee H-A et al (2013) Mulberry leaf extract inhibits invasive potential and downregulates hypoxia-inducible factor-1α (HIF-1α) in SK-N-BE2C neuroblastoma cells. Biosci Biotechnol Biochem 77:722–728. doi: 10.1271/bbb.120763 PubMedCrossRefGoogle Scholar
  99. Pece S, Tosoni D, Confalonieri S et al (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140:62–73. doi: 10.1016/j.cell.2009.12.007 PubMedCrossRefGoogle Scholar
  100. Pérez-Tenorio G, Karlsson E, Waltersson MA et al (2011) Clinical potential of the mTOR targets S6K1 and S6K2 in breast cancer. Breast Cancer Res Treat 128:713–723. doi: 10.1007/s10549-010-1058-x PubMedCrossRefGoogle Scholar
  101. Persano L, Pistollato F, Rampazzo E et al (2012) BMP2 sensitizes glioblastoma stem-like cells to Temozolomide by affecting HIF-1α stability and MGMT expression. Cell Death Dis 3:e412. doi: 10.1038/cddis.2012.153 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Pistollato F, Giampieri F, Battino M (2014) The use of plant-derived bioactive compounds to target cancer stem cells and modulate tumor microenvironment. Food Chem Toxicol 75C:58–70. doi: 10.1016/j.fct.2014.11.004 Google Scholar
  103. Polakis P (2012) Wnt signaling in cancer. Cold Spring Harb Perspect Biol 4:9. doi: 10.1101/cshperspect.a008052 CrossRefGoogle Scholar
  104. Prakash O, Kumar A, Kumar P, Ajeet A (2013) Anticancer potential of plants and natural products: a review. Am J Pharmacol Sci 1(6):104–115Google Scholar
  105. Rahaiee S, Shojaosadati S, Hashemi M, Moini S, Razavi S (2015) Improvement of crocin stability by biodegradeble nanoparticles of chitosan-alginate. Int J Biol Macromol 79:423–432PubMedCrossRefGoogle Scholar
  106. Rangarajan P, Subramaniam D, Paul S, et al (2015) Crocetinic acid inhibits hedgehog signaling to inhibit pancreatic cancer stem cells. Oncotarget; 6(29):27661-27673. doi: 10.18632/oncotarget.4871Google Scholar
  107. Ray B, Bisht S, Maitra A, Maitra A, Lahiri D (2011) Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin (NanoCurc™) in the neuronal cell culture and animal model: implications for Alzheimer's disease. J Alzheimers Dis 23(1):61–77PubMedPubMedCentralGoogle Scholar
  108. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111. doi: 10.1038/35102167 PubMedCrossRefGoogle Scholar
  109. Roesch A, Fukunaga-Kalabis M, Schmidt EC et al (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141:583–594. doi: 10.1016/j.cell.2010.04.020 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Rollinger JM, Stuppner H, Langer T (2008) Virtual screening for the discovery of bioactive natural products. Prog Drug Res 65(211):213–249. doi: 10.1007/978-3-7643-8117-2_6 Google Scholar
  111. Ryu MJ, Cho M, Song JY et al (2008) Natural derivatives of curcumin attenuate the Wnt/β-catenin pathway through down-regulation of the transcriptional coactivator p300. Biochem Biophys Res Commun 377:1304–1308. doi: 10.1016/j.bbrc.2008.10.171 PubMedCrossRefGoogle Scholar
  112. Saeed M, Kadioglu O, Khalid H et al (2015) Activity of the dietary flavonoid, apigenin, against multidrug-resistant tumor cells as determined by pharmacogenomics and molecular docking. J Nutr Biochem 26:44–56. doi: 10.1016/j.jnutbio.2014.09.008 PubMedCrossRefGoogle Scholar
  113. Samarghandian S, Borji A, Farahmand S, Afshari R, Davoodi S (2013) Crocus sativusL. (Saffron) stigma aqueous extract induces apoptosis in alveolar human lung cancer cells through caspase-dependent pathways activation. Biomed Res Int 2013:1–12CrossRefGoogle Scholar
  114. Sanchez F, Sobolev K (2010) Nanotechnology in concrete – a review. Construct Build Mater 24(11):2060–2071CrossRefGoogle Scholar
  115. Schatton T, Murphy GF, Frank NY et al (2008) Identification of cells initiating human melanomas. Nature 451:345–349. doi: 10.1038/nature06489 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Schulenburg A, Cech P, Herbacek I et al (2007) CD44-positive colorectal adenoma cells express the potential stem cell markers musashi antigen (msiI) and ephrin B2 receptor (EphB2). J Pathol 213:152–160. doi: 10.1002/path.2220 PubMedCrossRefGoogle Scholar
  117. Seo EJ, Wiench B, Hamm R et al (2015) Cytotoxicity of natural products and derivatives toward MCF-7 cell monolayers and cancer stem-like mammospheres. Phytomedicine 22:438–443. doi: 10.1016/j.phymed.2015.01.012 PubMedCrossRefGoogle Scholar
  118. Shabestari M, Samarghandian S (2013) DNA fragmentation and apoptosis induced by safranal in human prostate cancer cell line. Indian J Urol 29(3):177PubMedPubMedCentralCrossRefGoogle Scholar
  119. Sharma R, Euden S, Platton S, Cooke D, Shafayat A, Hewitt H et al (2004) Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 10(20):6847–6854PubMedCrossRefGoogle Scholar
  120. Shoichet B, Mcgovern S, Wei B, Irwin J (2002) Hits, leads and artifacts from virtual and high-throughput screening. In: Hicks MG, Kettner C (eds) Molecular informatics: confronting complexity. Proceedings of the Beilstein-Institut Workshop, May 13th–16th 2002, Bozen, Italy.
  121. Silva P, Bonifácio B, Ramos M, Negri K, Maria Bauab T, Chorilli M (2013) Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine 9:1–15PubMedPubMedCentralCrossRefGoogle Scholar
  122. Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828. doi: 10.1038/nature03128 PubMedGoogle Scholar
  123. Somwanshi S, Dola R, Siddheshwa S, Mereka A, Godg R, Patta S (2013) Nanomedicine drug delivery system. Asian J Biomed Pharmaceut Sci 3(22):9–15Google Scholar
  124. Sood AK, Coffin JE, Schneider GB et al (2004) Biological significance of focal adhesion kinase in ovarian cancer: role in migration and invasion. Am J Pathol 165:1087–1095. doi: 10.1016/S0002-9440(10)63370-6 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Stewart B, Wild C (2014) World cancer report 2014. IARC Press, LyonGoogle Scholar
  126. Suga H, Kadoshima T, Minaguchi M et al (2011) Self-formation of functional adeno- hypophysis in three-dimensional culture. Nature. doi: 10.1038/nature10637 PubMedGoogle Scholar
  127. Tai J, Cheung S, Ou D et al (2014) Antiproliferation activity of Devil’s club (Oplopanax horridus) and anticancer agents on human pancreatic cancer multicellular spheroids. Phytomedicine 21:506–514PubMedCrossRefGoogle Scholar
  128. Tanno T, Matsui W (2011) Development and maintenance of cancer stem cells under chronic inflammation. J Nippon Med Sch 78:138–145PubMedPubMedCentralCrossRefGoogle Scholar
  129. Teglund S, Toftgård R (2010) Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta 1805:181–208PubMedGoogle Scholar
  130. Teng Y, Wang X, Wang Y, Ma D (2010) Wnt/beta-catenin signaling regulates cancer stem cells in lung cancer A549 cells. Biochem Biophys Res Commun 392:373–379. doi: 10.1016/j.bbrc.2010.01.028 PubMedCrossRefGoogle Scholar
  131. Thiyagarajan V, Lin S, Chang Y, Weng C (2016) Identification of novel FAK and S6K1 dual inhibitors from natural compounds via ADMET screening and molecular docking. Biomed Pharmacother 80:52–62PubMedCrossRefGoogle Scholar
  132. Thiyagarajan V, Lin SH, Chia YC, Weng CF (2013) A novel inhibitor, 16-hydroxy-cleroda-3,13-dien-16,15-olide, blocks the autophosphorylation site of focal adhesion kinase (Y397) by molecular docking. Biochim Biophys Acta 1830:4091–4101. doi: 10.1016/j.bbagen.2013.04.027 PubMedCrossRefGoogle Scholar
  133. Thompson M (2010) The characterisation of nanoparticles. Royal Society of Chemistry, London. Retrieved 28 August 2016, from
  134. Turashvili G, Bouchal J, Burkadze G, Kolar Z (2006) Wnt signaling pathway in mammary gland development and carcinogenesis. Pathobiology 73:213–223. doi: 10.1159/000098207 PubMedCrossRefGoogle Scholar
  135. Unger C, Kramer N, Walzl A et al (2014) Modeling human carcinomas: physiological relevant 3D models to improve anti-cancer drug development. Adv Drug Deliv Rev 79–80:50–67. doi: 10.1016/j.addr.2014.10.015 PubMedCrossRefGoogle Scholar
  136. Usha T, Middha SK, Goyal AK et al (2014) Molecular docking studies of anti-cancerous candidates in Hippophae rhamnoides and Hippophae salicifolia. J Biomed Res 28:406–415. doi: 10.7555/JBR.28.20130110 PubMedPubMedCentralGoogle Scholar
  137. van der Bij G, Oosterling S, Beelen R, Meijer S, Coffey J, van Egmond M (2009) The perioperative period is an underutilized window of therapeutic opportunity in patients with colorectal cancer. Ann Surg 249(5):727–734PubMedCrossRefGoogle Scholar
  138. Verma S, Singh S (2008) Current and future status of herbal medicines. Vet World 2(2):347CrossRefGoogle Scholar
  139. Vogelstein B, Papadopoulos N, Velculescu V, Zhou S, Diaz L, Kinzler K (2013) Cancer genome landscapes. Science 339(6127):1546–1558PubMedPubMedCentralCrossRefGoogle Scholar
  140. Voskoglou-Nomikos T, Pater J, Seymour L (2003) Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res 9(11):4227–4239PubMedGoogle Scholar
  141. Walters WP, Stahl MT, Murcko MA (1998) Virtual screening—an overview. Drug Discov Today 3:160–178. doi: 10.1016/S1359-6446(97)01163-X CrossRefGoogle Scholar
  142. Wang Y, Hu J, Lin H et al (2016) Herbalog: a tool for target-based identification of herbal drug efficacy through molecular docking. Phytomedicine 23(12):1469–1474. doi: 10.1016/j.phymed.2016.08.008 PubMedCrossRefGoogle Scholar
  143. Wang Z, Li Y, Banerjee S, Sarkar FH (2009) Emerging role of Notch in stem cells and cancer. Cancer Lett 279:8–12PubMedCrossRefGoogle Scholar
  144. Warfel NA, El-Deiry WS (2014) HIF-1 signaling in drug resistance to chemotherapy. Curr Med Chem 21:3021–3028PubMedCrossRefGoogle Scholar
  145. WHO (2003) Global action against cancer. World Health Organization, Geneva, pp 1–25Google Scholar
  146. Wilson A, Radtke F (2006) Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Lett 580:2860–2868PubMedCrossRefGoogle Scholar
  147. Woodward WA, Chen MS, Behbod F et al (2007) WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci U S A 104:618–623. doi: 10.1073/pnas.0606599104 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Xia P (2014) Surface markers of cancer stem cells in solid tumors. Curr Stem Cell Res Ther 9(2):102–111PubMedCrossRefGoogle Scholar
  149. Yadav D, Suri S, Choudhary A, Sikender M, Hemant, Beg M et al (2011) A novel approach: herbal remedies and natural products in pharmaceutical science as nano drug delivery systems. Int J Pharm Technol 3(3):3092–3116Google Scholar
  150. Yamaguchi TP (2001) Heads or tails: wnts and anterior-posterior patterning. Curr Biol 11(17):R713–R724PubMedCrossRefGoogle Scholar
  151. Yamnik RL, Digilova A, Davis DC et al (2009) S6 kinase 1 regulates estrogen receptor alpha in control of breast cancer cell proliferation. J Biol Chem 284:6361–6369. doi: 10.1074/jbc.M807532200 PubMedCrossRefGoogle Scholar
  152. Yang W, Yan HX, Chen L et al (2008a) Wnt/β-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res 68:4287–4295. doi: 10.1158/0008-5472.CAN-07-6691 PubMedCrossRefGoogle Scholar
  153. Yang ZF, Ho DW, Ng MN et al (2008b) Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13:153–166. doi: 10.1016/j.ccr.2008.01.013 PubMedCrossRefGoogle Scholar
  154. You N, Zheng L, Liu W et al (2014) Proliferation inhibition and differentiation induction of hepatic cancer stem cells by knockdown of BC047440: a potential therapeutic target of stem cell treatment for hepatocellular carcinoma. Oncol Rep 31:1911–1920. doi: 10.3892/or.2014.3043 PubMedGoogle Scholar
  155. Ysebaert L, Chicanne G, Demur C et al (2006) Expression of beta-catenin by acute myeloid leukemia cells predicts enhanced clonogenic capacities and poor prognosis. Leukemia 20:1211–1216. doi: 10.1038/sj.leu.2404239 PubMedCrossRefGoogle Scholar
  156. Yuan X, Wu H, Xu H et al (2015) Notch signaling: an emerging therapeutic target for cancer treatment. Cancer Lett 369:20–27PubMedCrossRefGoogle Scholar
  157. Yuhas JM, Li AP, Martinez AO, Ladman AJ (1977) A simplified method for production and growth of multicellular tumor spheroids. Cancer Res 37:3639–3643PubMedGoogle Scholar
  158. Zheng P-W, Chiang L-C, Lin C-C (2005) Apigenin induced apoptosis through p53-dependent pathway in human cervical carcinoma cells. Life Sci 76:1367–1379. doi: 10.1016/j.lfs.2004.08.023 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ala’a Al-Hrout
    • 1
  • Badriya Baig
    • 1
  • Ali Hilal-Alnaqbi
    • 2
  • Amr Amin
    • 1
    • 3
  1. 1.Biology DepartmentCollege of Science, UAE UniversityAl-AinUAE
  2. 2.Department of Mechanical EngineeringCollege of Engineering, UAE UniversityAl-AinUAE
  3. 3.Zoology Department, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations