Skip to main content

Time-Varying Methods for Pathway and Sub-pathway Analysis

  • Chapter
  • First Online:
Computational Methods for Processing and Analysis of Biological Pathways

Abstract

This chapter presents in detail aspects related to pathway-based analysis of time-varying biological processes. Biological processes are inherently dynamical events involving genes and their products interacting within specific conditions. Genes are modulated by systemic perturbations (e.g., genetic modifications or drug treatments). Thus, monitoring the systemic response at multiple levels, in conjunction with the temporal evolution, is crucial to understanding and modeling the underlying biological phenomena in a comprehensive manner. The increasing need for developing biological network and pathway analysis methods capable of providing fine temporal resolution is highlighted, in the context of decreasing costs of high-throughput technologies which is expected to trigger a significant raise in time course omics experimental data availability. Several important challenges involved in this type of analysis are discussed, such as the conversion of pathway databases information into graphs (or networks) in order to allow easier interpretation of information and subsequent computational modeling, the contextualization of the transformed pathway graphs using transcriptional data, the use of search methods for the identification within graphs of paths highlighting the time dependent portions of pathways, as well as the use of various network-based statistics or interacting edge level metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allantaz F, Cheng DT, Bergauer T et al (2012) Expression profiling of human immune cell subsets identifies miRNA-mRNA regulatory relationships correlated with cell type specific expression. PLoS ONE 7:e29979

    Article  Google Scholar 

  • Büchel F, Rodriguez N, Swainston N et al (2013) Path2Models: large-scale generation of computational models from biochemical pathway maps. BMC Syst Biol 7:1

    Article  Google Scholar 

  • Cicek AE, Qi X, Cakmak A et al (2014) An online system for metabolic network analysis. Database bau091

    Google Scholar 

  • Chen X, Xu J, Huang B et al (2011) A sub-pathway-based approach for identifying drug response principal network. Bioinformatics 27:649–654

    Article  Google Scholar 

  • Dimitrakopoulou K, Dimitrakopoulos GN, Sgarbas KN, Bezerianos A (2014) Tamoxifen integromics and personalized medicine: dynamic modular transformations underpinning response to tamoxifen in breast cancer treatment. OMICS 18:15–33

    Article  Google Scholar 

  • Gelius-Dietrich G, Desouki AA, Fritzemeier CJ, Lercher MJ (2013) Sybil–efficient constraint-based modelling in R. BMC Syst Biol 7:125

    Article  Google Scholar 

  • Goeman JJ, Bühlmann P (2007) Analyzing gene expression data in terms of gene sets: methodological issues. Bioinformatics 23:980–987

    Article  Google Scholar 

  • Haynes WA, Higdon R, Stanberry L, Collins D, Kolker E (2013) Differential expression analysis for pathways. PLoS Comput Biol 9:e1002967

    Article  Google Scholar 

  • Jacob L, Neuvial P, Dudoit S (2012) More power via graph-structured tests for differential expression of gene networks. Ann Appl Stat 561–600

    Google Scholar 

  • Jethava V, Bhattacharyya C, Dubhashi D, Vemuri GN (2011) Netgem: network embedded temporal generative model for gene expression data. BMC Bioinformatics 12:1

    Article  Google Scholar 

  • Jo K, Kwon HB, Kim S (2014) Time-series RNA-seq analysis package (TRAP) and its application to the analysis of rice, Oryza sativa L. ssp. Japonica, upon drought stress. Methods 67:364–372

    Article  Google Scholar 

  • Jo K, Jung I, Moon JH, Kim S (2016) Influence maximization in time bounded network identifies transcription factors regulating perturbed pathways. Bioinformatics 32:i128–i136

    Article  Google Scholar 

  • Judeh T, Johnson C, Kumar A, Zhu D (2013) TEAK: topology enrichment analysis framework for detecting activated biological subpathways. Nucleic Acids Res 41:1425–1437

    Article  Google Scholar 

  • Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2015) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res gkv1070

    Google Scholar 

  • Kim Y, Kim TK, Kim Y et al (2011) Principal network analysis: identification of subnetworks representing major dynamics using gene expression data. Bioinformatics 27:391–398

    Article  Google Scholar 

  • Kovács IA, Palotai R, Szalay MS, Csermely P (2010) Community landscapes: an integrative approach to determine overlapping network module hierarchy, identify key nodes and predict network dynamics. PLoS ONE 5:e12528

    Article  Google Scholar 

  • Li C, Han J, Shang D et al (2012) Identifying disease related sub-pathways for analysis of genome-wide association studies. Gene 503:101–109

    Article  Google Scholar 

  • Li C, Han J, Yao Q et al (2013) Subpathway-GM: identification of metabolic subpathways via joint power of interesting genes and metabolites and their topologies within pathways. Nucleic Acids Res 41:e101

    Article  Google Scholar 

  • Li X, Shen L, Shang X, Liu W (2015) Subpathway analysis based on signaling-pathway impact analysis of signaling pathway. PLoS ONE 10:e0132813

    Article  Google Scholar 

  • Martini P, Sales G, Massa MS, Chiogna M, Romualdi C (2013) Along signal paths: an empirical gene set approach exploiting pathway topology. Nucleic Acids Res 41:e19

    Article  Google Scholar 

  • Martini P, Sales G, Calura E, Cagnin S, Chiogna M, Romualdi C (2014) timeClip: pathway analysis for time course data without replicates. BMC Bioinformatics 15:1

    Article  Google Scholar 

  • Massa MS, Chiogna M, Romualdi C (2010) Gene set analysis exploiting the topology of a pathway. BMC Syst Biol 4:1

    Article  Google Scholar 

  • Matsunaga T, Yonemori C, Tomita E, Muramatsu M (2009) Clique-based data mining for related genes in a biomedical database. BMC Bioinformatics 10:1

    Article  Google Scholar 

  • Moutselos K, Kanaris I, Chatziioannou A, Maglogiannis I, Kolisis FN (2009) KEGGconverter: a tool for the in-silico modelling of metabolic networks of the KEGG Pathways database. BMC Bioinformatics 10:1

    Article  Google Scholar 

  • Nam S, Chang HR, Kim KT et al (2014) PATHOME: an algorithm for accurately detecting differentially expressed subpathways. Oncogene 33:4941–4951

    Article  Google Scholar 

  • Nazarov PV, Reinsbach SE, Muller A, Nicot N, Philippidou D, Vallar L, Kreis S (2013) Interplay of microRNAs, transcription factors and target genes: linking dynamic expression changes to function. Nucleic Acids Res 41:2817–2831

    Article  Google Scholar 

  • Sales G, Calura E, Cavalieri D, Romualdi C (2012) Graphite—a bioconductor package to convert pathway topology to gene network. BMC Bioinform 13:1

    Article  Google Scholar 

  • Sales G, Calura E, Martini P, Romualdi C (2013) Graphite Web: web tool for gene set analysis exploiting pathway topology. Nucleic Acids Res gkt386

    Google Scholar 

  • Sebastian-Leon P, Vidal E, Minguez P et al (2014) Understanding disease mechanisms with models of signaling pathway activities. BMC Syst Biol 8:1

    Article  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. In: Proceedings of the national academy of sciences 102:15545–15550

    Google Scholar 

  • Tarca AL, Draghici S, Khatri P et al (2009) A novel signaling pathway impact analysis. Bioinformatics 25:75–82

    Article  Google Scholar 

  • Vrahatis AG, Dimitrakopoulou K, Balomenos P, Tsakalidis AK, Bezerianos A (2016) CHRONOS: a time-varying method for microRNA-mediated subpathway enrichment analysis. Bioinformatics 32:884–892

    Article  Google Scholar 

  • Wrzodek C, Büchel F, Ruff M, Dräger A, Zell A (2013) Precise generation of systems biology models from KEGG pathways. BMC Syst Biol 7:1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Bezerianos .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Bezerianos, A., Dragomir, A., Balomenos, P. (2017). Time-Varying Methods for Pathway and Sub-pathway Analysis. In: Computational Methods for Processing and Analysis of Biological Pathways. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-53868-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53868-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53867-9

  • Online ISBN: 978-3-319-53868-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics