Skip to main content

Mitigation of Climate Change: Introduction

  • Chapter
  • First Online:
Carbon Sequestration for Climate Change Mitigation and Adaptation

Abstract

The annual global greenhouse gas (GHGs) emissions have continued to grow since the industrial revolution. The dominant driving force for the anthropogenic GHGs emission include population growth, economic growth, fossil fuel consumption and land use change. Since the beginning of industrial revolution to 2015, cumulative anthropogenic carbon dioxide (CO2) emission of 600 ± 70 Pg C were released to the atmosphere, causing an increase in atmospheric CO2 relative abundance of 144% compared to pre-industrial era. The atmospheric concentrations of methane (CH4) and nitrous oxide (N2O) have also increased significantly. As a result, changes in climate has caused impacts on natural and human systems across the globe, and continued GHGs emission will cause further climate change impacts. Accurate assessment of anthropogenic CO2 emissions and their redistribution among the atmosphere, ocean and terrestrial biosphere provides better understanding of C cycling and also support the development of climate policies, and project future climate change. The mitigation options available combine measures to reduce energy use and CO2 intensity of the end use sectors, reduction of net GHG emissions, decarbonization of the energy supply, and capture and sequestration of C through enhancement of natural C sinks or by engineering techniques. There has also been emphasis on engineering of climate as an alternative mitigation option. Geoengineering , a global large-scale manipulation of the environment, is considered as one of the effective means of mitigating global warming caused by anthropogenic greenhouse gases (GHGs) emission. Assessment of technical and theoretical aspects of solar radiation management (SRM) and carbon dioxide (CO2) removal methods (CRM) as well as their potential impacts on global climate and ecosystems will be reviewed. Most of the proposed geological engineering methods involving land or ocean will use physical, chemical, or biological approaches to remove atmospheric CO2, while those proposed for atmosphere or space will target radiation without affecting atmospheric CO2 concentration. The CRM schemes tend to be slower, and able to sequester an amount of atmospheric CO2 that is small compared to cumulative anthropogenic CO2 emissions. In contrast, SRM approaches have relatively short lead times and can act rapidly to reduce temperature anomaly caused by GHGs emission. Overall, current research on geoengineering is scanty and various international treaties may limit some geoengineering experiments in the real world due to concerns of an unintended consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, Meinshausen M, Meinshausen N (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458(7242):1163–1166. doi:10.1038/nature08019

    Article  CAS  Google Scholar 

  • Amundson R (2001) The carbon budget in soils. Annu Rev Earth Pl Sci 29(1):535–562. doi:10.1146/annurev.earth.29.1.535

    Article  CAS  Google Scholar 

  • Anderson K, Bows A (2011) Beyond ‘dangerous’ climate change: emission scenarios for a new world. Philos T R Soc A 369(1934):20–44. doi:10.1098/rsta.2010.0290

    Article  CAS  Google Scholar 

  • Anderson J, Chiavari J (2009) Understanding and improving NGO position on CCS. Energ Procedia 1(1):4811–4817. doi:10.1016/j.egypro.2009.02.308

    Article  Google Scholar 

  • Anderson LA, Sarmiento JL (1994) Redfield ratios of remineralization determined by nutrient data analysis. Glob Biogeochem Cy 8(1):65–80. doi:10.1029/93gb03318

    Article  CAS  Google Scholar 

  • Angel R (2006) Feasibility of cooling the Earth with a cloud of small spacecraft near the inner Lagrange point (L1). Proc Natl Acad Sci USA 103(46):17184–17189. doi:10.1073/pnas.0608163103

    Article  CAS  Google Scholar 

  • Auerbach DI, Caulfield JA, Adams EE, Herzog HJ (1997) Impacts of ocean CO2 disposal on marine life: I. A toxicological assessment integrating constant‐concentration laboratory assay data with variable‐concentration field exposure. Environ Model Assess 2(4):333–343

    Google Scholar 

  • Aumont O, Bopp L (2006) Globalizing results from ocean in situ iron fertilization studies. Glob Biogeochem Cy 20 (2). doi:10.1029/2005gb002591

  • Baatz C, Heyward C, Stelzer H (2016) The ethics of engineering the climate. Environ Value 25(1):1–5. doi:10.3197/096327115x14497392134766

    Article  Google Scholar 

  • Bala G, Nag B (2012) Albedo enhancement over land to counteract global warming: impacts on hydrological cycle. Clim Dynam 39(6):1527–1542. doi:10.1007/s00382-011-1256-1

    Article  Google Scholar 

  • Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB, Delire C, Mirin A (2007) Combined climate and carbon-cycle effects of large-scale deforestation (vol 104, pg 6550. Proc Natl Acad Sci USA 104(23):9911. doi:10.1073/pnas.0704096104

    CAS  Google Scholar 

  • Bao LH, Trachtenberg MC (2006) Facilitated transport of CO2 across a liquid membrane: comparing enzyme, amine, and alkaline. J Membr Sci 280(1–2):330–334. doi:10.1016/j.memsci.2006.01.036

    Article  CAS  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47(2):151–163. doi:10.1111/j.1365-2389.1996.tb01386.x

    Article  CAS  Google Scholar 

  • Betts RA (2000) Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408(6809):187–190. doi:10.1038/35041545

    Article  CAS  Google Scholar 

  • Bewick R, Sanchez JP, McInnes CR (2012) Gravitationally bound geoengineering dust shade at the inner Lagrange point. Adv Space Res 50(10):1405–1410. doi:10.1016/j.asr.2012.07.008

    Article  Google Scholar 

  • Blodgett J, Parker L (2010) Greenhouse gas emission drivers: population, economic development and growth, and energy use. Congressional Research Service, United States Congress Washington, DC

    Google Scholar 

  • Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen V-M, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh SK, Sherwood S, Stevens B, Zhang XY (2013) Clouds and Aerosols. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 571–657

    Google Scholar 

  • Boucher O, Forster PM, Gruber N, Ha-Duong M, Lawrence MG, Lenton TM, Maas A, Vaughan NE (2014) Rethinking climate engineering categorization in the context of climate change mitigation and adaptation. Wiley Interdiscip Rev Clim Change 5(1):23–35. doi:10.1002/wcc.261

    Article  Google Scholar 

  • Boyd P, Ellwood M (2010) The biogeochemical cycle of iron in the ocean. Nat Geosci 3(10):675–682

    Article  CAS  Google Scholar 

  • Boyd PW (2008) Ranking geo-engineering schemes. Nat Geosci 1(11):722–724. doi:10.1038/ngeo348

    Article  CAS  Google Scholar 

  • Boyd PW, Watson AJ, Law CS, Abraham ER, Trull T, Murdoch R, Bakker DC, Bowie AR, Buesseler K, Chang H (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407(6805):695–702

    Article  CAS  Google Scholar 

  • Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, Buesseler KO, Coale KH, Cullen JJ, de Baar HJW, Follows M, Harvey M, Lancelot C, Levasseur M, Owens NPJ, Pollard R, Rivkin RB, Sarmiento J, Schoemann V, Smetacek V, Takeda S, Tsuda A, Turner S, Watson AJ (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315(5812):612–617. doi:10.1126/science.1131669

    Article  CAS  Google Scholar 

  • Bruckner T, Bashmakov IA, Mulugetta Y, Chum H, Navarro AdlV, Edmonds J, Faaij A, Fungtammasan B, Garg A, Hertwich E, Honnery D, Infield D, Kainuma M, Khennas S, Kim S, Nimir HB, Riahi K, Strachan N, Wiser R, Zhang X (2014) Energy systems In: Edenhofer O, Pichs-Madruga R, Sokona Y et al (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 511–597

    Google Scholar 

  • Burnham A, Han J, Clark CE, Wang M, Dunn JB, Palou-Rivera I (2012) Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum. Environ Sci Technol 46(2):619–627. doi:10.1021/es201942m

    Article  CAS  Google Scholar 

  • Caldeira K, Keith DW (2010) The need for climate engineering research. Issues Sci Technol 27(1):57–62

    Google Scholar 

  • Caldeira K, Bala G, Cao L (2013) The science of geoengineering. In: Jeanloz R (ed) Annual review of earth and planetary sciences, vol 41, pp 231–256. doi:10.1146/annurev-earth-042711-105548

  • Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320(5882):1456–1457. doi:10.1126/science.1155458

    Article  CAS  Google Scholar 

  • Canadell JG, Schulze ED (2014) Global potential of biospheric carbon management for climate mitigation. Nat Comm 5. doi:10.1038/ncomms6282

  • Canadell J, Pataki D, Gifford R, Houghton R, Luo Y, Raupach M, Smith P, Steffen W (2007a) Saturation of the terrestrial carbon sink. In: Canadell J, Pataki D, Pitelka L (eds) Terrestrial ecosystems in a changing world. Global Change—The IGBP Series. Springer, Berlin pp 59–78. doi:10.1007/978-3-540-32730-1_6

  • Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007b) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104(47):18866–18870. doi:10.1073/pnas.0702737104

    Article  CAS  Google Scholar 

  • Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H, Gabrielle B, Eng AG, Lucht W, Mapako M, Cerutti OM, McIntyre T, Minowa T, Pingoud K (2011) Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y et al (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge

    Google Scholar 

  • Ciais P, Sabine CL, Govindasamy B, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myeneni R, Piao S, Thornton P (2013) Carbon and other boigeochemical cycles. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: pysical science basis. contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 465–570

    Google Scholar 

  • Clarke L, Jiang K, Akimoto K, Babiker M, Blanford G, Fisher-Vanden K, Hourcade J-C, Krey V, Kriegler E, A. Löschel, McCollum D, Paltsev S, Rose S, Shukla PR, Tavoni M, Zwaan BCCvd, Vuuren DPv (2014) Assessing transformation pathways. In: Edenhofer O, Pichs-Madruga R, Sokona Y et al (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 413–510

    Google Scholar 

  • Creutzig F, Ravindranath NH, Berndes G, Bolwig S, Bright R, Cherubini F, Chum H, Corbera E, Delucchi M, Faaij A, Fargione J, Haberl H, Heath G, Lucon O, Plevin R, Popp A, Robledo-Abad C, Rose S, Smith P, Stromman A, Suh S, Masera O (2015) Bioenergy and climate change mitigation: an assessment. GCB Bioenergy 7(5):916–944. doi:10.1111/gcbb.12205

    Article  CAS  Google Scholar 

  • Crutzen PJ (2006) Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim Change 77(3–4):211–219. doi:10.1007/s10584-006-9101-y

    Article  CAS  Google Scholar 

  • Cusack DF, Axsen J, Shwom R, Hartzell-Nichols L, White S, Mackey KRM (2014) An interdisciplinary assessment of climate engineering strategies. Front Ecol Environ 12(5):280–287. doi:10.1890/130030

    Article  Google Scholar 

  • de Gouw JA, Parrish DD, Frost GJ, Trainer M (2014) Reduced emissions of CO2, NOx, and SO2 from US power plants owing to switch from coal to natural gas with combined cycle technology. Earths Future 2(2):75–82. doi:10.1002/2013ef000196

    Article  CAS  Google Scholar 

  • Dupont S, Poertner H (2013) Marine science: get ready for ocean acidification. Nature 498(7455):429

    Article  CAS  Google Scholar 

  • EIA (2015) International energy outlook 2015. US Department of Energy. http://www.eia.doe.gov/oiaf/ieo/pdf. Accessed Sept 2015

  • Ellis EC, Goldewijk KK, Siebert S, Lightman D, Ramankutty N (2010) Anthropogenic transformation of the biomes, 1700 to 2000. Glob Ecol Biogeogr 19(5):589–606. doi:10.1111/j.1466-8238.2010.00540.x

    Google Scholar 

  • Erb K-H, Gaube V, Krausmann F, Plutzar C, Bondeau A, Haberl H (2007) A comprehensive global 5 min resolution land-use data set for the year 2000 consistent with national census data. J Land Use Sci 2(3):191–224. doi:10.1080/17474230701622981

    Article  Google Scholar 

  • Falkowski PG (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387(6630):272–275. doi:10.1038/387272a0

    Article  CAS  Google Scholar 

  • Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Hogberg P, Linder S, Mackenzie FT, Moore B, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290(5490):291–296. doi:10.1126/science.290.5490.291

    Article  CAS  Google Scholar 

  • Feichter J, Leisner T (2009) Climate engineering: a critical review of approaches to modify the global energy balance. Euro Phys J Spec Top 176:81–92. doi:10.1140/epjst/e2009-01149-8

    Article  Google Scholar 

  • Feng K, Davis SJ, Sun L, Hubacek K (2015) Drivers of the US CO2 emissions 1997–2013. Nat Comm 6. doi:10.1038/ncomms8714

  • Fischedick M, Schaeffer R, Adedoyin A, Akai M, Bruckner T, Clarke L, Krey V, Savolainen I, Teske S, Ürge-Vorsatz D, Wright R (2011) Mitigation potential and costs In: Edenhofer O, Pichs-Madruga R, Sokona Y et al (eds) IPCC special report on renewable energy sources and climate change mitigation. Prepared by working group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 791–864

    Google Scholar 

  • Fleming JR (2006) The pathological history of weather and climate modification: three cycles of promise and hype. Hist Stud PhysBiol 37:3–25. doi:10.1525/hsps.2006.37.1.3

    Google Scholar 

  • Foley JA, Monfreda C, Ramankutty N, Zaks D (2007) Our share of the planetary pie. Proc Natl Acad Sci USA 104(31):12585–12586. doi:10.1073/pnas.0705190104

    Article  CAS  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O/’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478(7369):337–342. doi:10.1038/nature10452

  • GAO (2011) Climate engineering: technical status, future directions, and potential responses. United States Government Accountability Office (US GAO), Center for Science, Technology, and Engineering, Report No. GAO-11–71, Washington, DC, 135 p

    Google Scholar 

  • Goldewijk KK (2001) Estimating global land use change over the past 300 years: the HYDE Database. Glob Biogeochem Cy 15(2):417–433. doi:10.1029/1999gb001232

    Article  Google Scholar 

  • Greenpeace (2008) False hope: why carbon capture and storage won’t save the climate. Greenpeace International, Amsterdam, 42 p

    Google Scholar 

  • Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc Natl Acad Sci USA 104(31):12942–12945. doi:10.1073/pnas.0704243104

    Article  CAS  Google Scholar 

  • Haro P, Aracil C, Vidal-Barrero F, Ollero P (2015) Rewarding of extra-avoided GHG emissions in thermochemical biorefineries incorporating Bio-CCS. Appl Energy 157:255–266. doi:10.1016/j.apenergy.2015.08.020

    Article  CAS  Google Scholar 

  • Harvey LDD (2008) Mitigating the atmospheric CO2 increase and ocean acidification by adding limestone powder to upwelling regions. J Geophys Res-Oceans 113 (C4). doi:10.1029/2007jc004373

  • Hertwich EG, Peters GP (2009) Carbon footprint of nations: a global. Trade-linked analysis. Environ Sci Technol 43(16):6414–6420. doi:10.1021/es803496a

    Article  CAS  Google Scholar 

  • Hughes JD (2009) The energy issue: a more urgent problem than climate change? In: Homer-Dixon TI (ed) Carbon shift: how the twin crises of depletion oil and climate change will define the future. Random House of Canada, Toronto, pp 58–95

    Google Scholar 

  • Huijts NMA, Midden CJH, Meijnders AL (2007) Social acceptance of carbon dioxide storage. Energy Policy 35(5):2780–2789. doi:10.1016/j.enpol.2006.12.007

    Article  Google Scholar 

  • Hurtt GC, Chini LP, Frolking S, Betts RA, Feddema J, Fischer G, Fisk JP, Hibbard K, Houghton RA, Janetos A, Jones CD, Kindermann G, Kinoshita T, Goldewijk KK, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thornton P, van Vuuren DP, Wang YP (2011) Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim Change 109(1–2):117–161. doi:10.1007/s10584-011-0153-2

    Article  Google Scholar 

  • IAEA (2013) The power reactor information system (PRIS) and its extension to non-electrical applications. Decommissioning and delayed projects information. International Atomic Energy Agency, Vienna, p 112

    Google Scholar 

  • IEA (2014) The way foward: five key actions to achieve a low-carbon energy sector. International Energy Agency (IEA), Paris, p 8

    Google Scholar 

  • IEA (2015a) CO2 emissions from fossil fuel combustion. International Energy Agency (IEA) statistics. International Energy Agency, Paris

    Google Scholar 

  • IEA (2015b) Tracking clean energy progress 2015: energy technology perspectives 2015 excerpt iea input to the clean energy ministerial. International Energy Agency (IEA), Paris, p 98

    Google Scholar 

  • IPCC (2005) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2012) Meeting report of the Intergovernmental Panel on Climate Change expert meeting on geoengineering. IPCC Potsdam Institute for Climate Impact Research, Potsdam, p 99

    Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. In: Pachauri RK, Meyer L, Team CW (eds) Intergovernmental Panel on Climate Change, Geneva, p 151

    Google Scholar 

  • Izrael YA, Ryaboshapko AG, Petrov NN (2009) Comparative analysis of geo-engineering approaches to climate stabilization. Russ Meteorol Hydrol 34(6):335–347. doi:10.3103/s1068373909060016

    Article  Google Scholar 

  • Jansson C, Wullschleger SD, Kalluri UC, Tuskan GA (2010) Phytosequestration: carbon biosequestration by plants and the prospects of genetic engineering. Bioscience 60(9):685–696. doi:10.1525/bio.2010.60.9.6

    Article  Google Scholar 

  • Jin X, Gruber N, Frenzel H, Doney SC, McWilliams JC (2008) The impact on atmospheric CO2 of iron fertilization induced changes in the ocean’s biological pump. BioGeosciences 5(2):385–406

    Article  CAS  Google Scholar 

  • Johnson KS, Karl DM (2002) Is ocean fertilization credible and creditable? Science 296(5567):467–468

    Article  CAS  Google Scholar 

  • Johnsson F, Reiner D, Itaoka K, Herzog H (2010) Stakeholder attitudes on carbon capture and storage—an international comparison. Int J Greenh Gas Con 4(2):410–418. doi:10.1016/j.ijggc.2009.09.006

    Article  CAS  Google Scholar 

  • Karl DM, Letelier RM (2008) Nitrogen fixation-enhanced carbon sequestration in low nitrate, low chlorophyll seascapes. Mar Ecol Prog Ser 364:257–268. doi:10.3354/meps07547

    Article  CAS  Google Scholar 

  • Karmellos M, Kopidou D, Diakoulaki D (2016) A decomposition analysis of the driving factors of CO2 (carbon dioxide) emissions from the power sector in the European Union countries. Energy 94:680–692. doi:10.1016/j.energy.2015.10.145

    Article  CAS  Google Scholar 

  • Karstensen J, Peters GP, Andrew RM (2015) Allocation of global temperature change to consumers. Clim Change 129(1–2):43–55. doi:10.1007/s10584-015-1333-2

    Article  Google Scholar 

  • Kaya Y (1990) Impact of carbon dioxide emission control on GNP growth: interpretation of proposed scenarios. Paper presented to the IPCC Energy and In-dustry Subgroup, Response Strategies Working Group. Paris, France (Mimeo)

    Google Scholar 

  • Kaya Y (1995) The role of CO2 removal and disposal. Energ Convert Manage 36(6–9):375–380. doi:10.1016/0196-8904(95)00025-9

    Article  CAS  Google Scholar 

  • Keith DW (2000) Geoengineering the climate: history and prospect. Annu Rev Energy 25:245–284. doi:10.1146/annurev.energy.25.1.245

    Article  Google Scholar 

  • Keith DW (2009) Why capture CO2 from the atmosphere? Science 325(5948):1654–1655. doi:10.1126/science.1175680

    Article  CAS  Google Scholar 

  • Keith DW, Ha-Duong M, Stolaroff JK (2006) Climate strategy with CO2 capture from the air. Clim Change 74(1–3):17–45. doi:10.1007/s10584-005-9026-x

    Article  CAS  Google Scholar 

  • Keller DP, Feng EY, Oschlies A (2014) Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario. Nat Comm 5. doi:10.1038/ncomms4304

  • Kemper J (2015) Biomass and carbon dioxide capture and storage: a review. Int J Greenh Gas Con 40:401–430. doi:10.1016/j.ijggc.2015.06.012

    Article  CAS  Google Scholar 

  • Kheshgi HS (1995) Sequestering atmospheric carbon dioxide by using increasing ocean alkalinity. Energy 20(9):915–922. doi:10.1016/0360-5442(95)00035-f

    Article  CAS  Google Scholar 

  • Kirchsteiger C (2008) Carbon capture and storage-desirability from a risk management point of view. Safety Sci 46(7):1149–1154. doi:10.1016/j.ssci.2007.06.012

    Article  Google Scholar 

  • Kohler P, Hartmann J, Wolf-Gladrow DA (2010) Geoengineering potential of artificially enhanced silicate weathering of olivine. Proc Natl Acad Sci USA 107(47):20228–20233. doi:10.1073/pnas.1000545107

    Article  CAS  Google Scholar 

  • Kravitz B, Robock A, Shindell DT, Miller MA (2012) Sensitivity of stratospheric geoengineering with black carbon to aerosol size and altitude of injection. J Geophys Res-Atmos 117. doi:10.1029/2011jd017341

  • Kravitz B, Robock A, Forster PM, Haywood JM, Lawrence MG, Schmidt H (2013) An overview of the Geoengineering Model Intercomparison Project (GeoMIP). J Geophys Res-Atmos 118(23):13103–13107. doi:10.1002/2013jd020569

    Article  Google Scholar 

  • Krey V (2014) Global energy-climate scenarios and models: a review. WIREs Clim Change 3(4):363–383. doi:10.1002/wene.98

    Google Scholar 

  • Lacis AA, Schmidt GA, Rind D, Ruedy RA (2010) Atmospheric CO2: principal control knob governing earth’s temperature. Science 330(6002):356–359. doi:10.1126/science.1190653

    Article  CAS  Google Scholar 

  • Lackner KS, Brennan S, Matter JM, Park AHA, Wright A, van der Zwaan B (2012) The urgency of the development of CO2 capture from ambient air. Proc Natl Acad Sci USA 109(33):13156–13162. doi:10.1073/pnas.1108765109

    Article  CAS  Google Scholar 

  • Lal R (2007) Soil science and the carbon civilization. Soil Sci Soc Am J 71(5):1425–1437. doi:10.2136/sssaj2007.0001

    Article  CAS  Google Scholar 

  • Lal R (2008) Carbon sequestration. Philos T R Soc B 363(1492):815–830. doi:10.1098/rstb.2007.2185

    Article  CAS  Google Scholar 

  • Lal R (2016) Beyond COP21: potential and challenges of the “4 per Thousand” initiative. J Soil Water Conserv 71(1):20A–25A. doi:10.2489/jswc.71.1.20A

    Article  Google Scholar 

  • Lampitt RS, Achterberg EP, Anderson TR, Hughes JA, Iglesias-Rodriguez MD, Kelly-Gerreyn BA, Lucas M, Popova EE, Sanders R, Shepherd JG, Smythe-Wright D, Yool A (2008) Ocean fertilization: a potential means of geoengineering? Philos T R Soc A 366(1882):3919–3945. doi:10.1098/rsta.2008.0139

    Article  CAS  Google Scholar 

  • Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson MJ (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Glob Biogeochem Cy 14(2):639–654. doi:10.1029/1999gb001195

    Article  CAS  Google Scholar 

  • Larson ED, Li Z, Williams RH (2012) Fossil Energy. In: Johansson TB, Nakicenovic N, Patwardhan A, Gomez-Echeverri L (eds) Global energy assessment: toward a sustainable future. Cambridge University Press, International Institute for Applied Systems Analysis, Cambridge, Laxenburg, pp 901–992

    Chapter  Google Scholar 

  • Latham J (1990) Control of global warming? Nature 347(6291):339–340

    Article  Google Scholar 

  • Le Quéré C, Moriarty R, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Friedlingstein P, Peters GP, Andres RJ, Boden TA, Houghton RA, House JI, Keeling RF, Tans P, Arneth A, Bakker DCE, Barbero L, Bopp L, Chang J, Chevallier F, Chini LP, Ciais P, Fader M, Feely RA, Gkritzalis T, Harris I, Hauck J, Ilyina T, Jain AK, Kato E, Kitidis V, Goldewijk KK, Koven C, Landschuetzer P, Lauvset SK, Lefevre N, Lenton A, Lima ID, Metzl N, Millero F, Munro DR, Murata A, Nabel JEMS, Nakaoka S, Nojiri Y, O’Brien K, Olsen A, Ono T, Perez FF, Pfeil B, Pierrot D, Poulter B, Rehder G, Roedenbeck C, Saito S, Schuster U, Schwinger J, Seferian R, Steinhoff T, Stocker BD, Sutton AJ, Takahashi T, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, van Heuven S, Vandemark D, Viovy N, Wiltshire A, Zaehle S, Zeng N (2015) Global carbon budget 2015. Earth Sys Data 7(2):349–396. doi:10.5194/essd-7-349-2015

    Article  Google Scholar 

  • Le Quéré C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA, Keeling RF, Alin S, Andrews OD, Anthoni P, Barbero L, Bopp L, Chevallier F, Chini LP, Ciais P, Currie K, Delire C, Doney SC, Friedlingstein P, Gkritzalis T, Harris I, Hauck J, Haverd V, Hoppema M, Klein Goldewijk K, Jain AK, Kato E, Körtzinger A, Landschützer P, Lefèvre N, Lenton A, Lienert S, Lombardozzi D, Melton JR, Metzl N, Millero F, Monteiro PMS, Munro DR, Nabel JEMS, Nakaoka SI, O’Brien K, Olsen A, Omar AM, Ono T, Pierrot D, Poulter B, Rödenbeck C, Salisbury J, Schuster U, Schwinger J, Séférian R, Skjelvan I, Stocker BD, Sutton AJ, Takahashi T, Tian H, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Zaehle S (2016) Global carbon budget 2016. Earth Sys Data 8(2):605–649. doi:10.5194/essd-8-605-2016

    Article  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems: a review. Mitig Adapt Strat Glob Change 11(2):395–419. doi:10.1007/s11027-005-9006-5

    Article  Google Scholar 

  • Lenton TM, Vaughan NE (2009) The radiative forcing potential of different climate geoengineering options. Atmos Chem Phys 9(15):5539–5561. doi:10.5194/acp-9-5539-2009

    Article  CAS  Google Scholar 

  • Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci USA 105(6):1786–1793. doi:10.1073/pnas.0705414105

    Article  CAS  Google Scholar 

  • Lin AC (2013) Does geoengineering present a moral hazard? Ecol Law Quart 40(3):673–712

    Google Scholar 

  • Linner B-O, Wibeck V (2015) Dual high-stake emerging technologies: a review of the climate engineering research literature. Wiley Interdiscip Rev Clim Change 6(2):255–268. doi:10.1002/wcc.333

    Article  Google Scholar 

  • MacCracken MC (2009) On the possible use of geoengineering to moderate specific climate change impacts. Environ Res Lett 4(4). doi:10.1088/1748-9326/4/4/045107

  • Mahmoudkhani M, Keith DW (2009) Low-energy sodium hydroxide recovery for CO2 capture from atmospheric air-Thermodynamic analysis. Int J Greenh Gas Con 3(4):376–384. doi:10.1016/j.ijggc.2009.02.003

    Article  CAS  Google Scholar 

  • Malla S (2009) CO2 emissions from electricity generation in seven Asia-Pacific and North American countries: a decomposition analysis. Energy Policy 37(1):1–9. doi:10.1016/j.enpol.2008.08.010

    Article  Google Scholar 

  • Malone EL, Dooley JJ, Bradbury JA (2010) Moving from misinformation derived from public attitude surveys on carbon dioxide capture and storage towards realistic stakeholder involvement. Int J Greenh Gas Con 4(2):419–425. doi:10.1016/j.ijggc.2009.09.004

    Article  CAS  Google Scholar 

  • Marchetti C (1977) On geoengineering and the CO2 problem. Clim Change 1(1):59–68. doi:10.1007/BF00162777

    Article  CAS  Google Scholar 

  • Maroto-Valer MM, Fauth DJ, Kuchta ME, Zhang Y, Andresen JM (2005) Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration. Fuel Process Technol 86(14–15):1627–1645. doi:10.1016/j.fuproc.2005.01.017

    Article  CAS  Google Scholar 

  • Matthews HD, Caldeira K (2008) Stabilizing climate requires near-zero emissions. Geophys Res Lett 35(4). doi:10.1029/2007gl032388

  • McCarl BA, Sands RD (2007) Competitiveness of terrestrial greenhouse gas offsets: are they a bridge to the future? Clim Change 80(1–2):109–126. doi:10.1007/s10584-006-9168-5

    Article  CAS  Google Scholar 

  • McCusker KE, Battisti DS, Bitz CM (2012) The climate response to stratospheric sulfate injections and implications for addressing climate emergencies. J Climate 25(9):3096–3116. doi:10.1175/jcli-d-11-00183.1

    Article  Google Scholar 

  • McGlashan N, Shah N, Caldecott B, Workman M (2012) High-level techno-economic assessment of negative emissions technologies. Process Saf Environ Prot 90(6):501–510. doi:10.1016/j.psep.2012.10.004

    Article  CAS  Google Scholar 

  • Metting FB, Smith JL, Amthor JS, Izaurralde RC (2001) Science needs and new technology for increasing soil carbon sequestration. Clim Change 51(1):11–34. doi:10.1023/a:1017509224801

    Article  Google Scholar 

  • Mollersten K, Yan JY, Moreira JR (2003) Potential market niches for biomass energy with CO2 capture and storage—opportunities for energy supply with negative CO2 emissions. Biomass Bioenerg 25(3):273–285. doi:10.1016/s0961-9534(03)00013-8

    Article  Google Scholar 

  • Moomaw W, Ramakrishna K, Gallagher K, Fried T (1999) The Kyoto Protocol: a blueprint for sustainable development. J Environ Dev 8(1):82–90

    Article  Google Scholar 

  • Moomaw W, Yamba F, Kamimoto M, Maurice L, Nyboer J, Urama K, Weir T (2011) Renewable energy and climate change. In: Edenhofer O, Pichs-Madruga R, Sokona Y et al (eds) IPCC Special report on renewable energy sources and climate change mitigation. Prepared by working group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 161–207

    Chapter  Google Scholar 

  • Nansai K, Kagawa S, Suh S, Fujii M, Inaba R, Hashimoto S (2009) Material and energy dependence of services and its implications for climate change. Environ Sci Technol 43(12):4241–4246. doi:10.1021/es8025775

    Article  CAS  Google Scholar 

  • NAS (1992) Policy implications of greenhouse warming: mitigation, adaptation, and the science base. National Academy Press, Washington, DC

    Google Scholar 

  • Negra NB, Todorovic J, Ackermann T (2006) Loss evaluation of HVAC and HVDC transmission solutions for large offshore wind farms. Electr Pow Syst Res 76(11):916–927. doi:10.1016/j.epsr.2005.11.004

    Article  Google Scholar 

  • Niemeier U, Schmidt H, Timmreck C (2011) The dependency of geoengineered sulfate aerosol on the emission strategy. Atmos Sci Lett 12(2):189–194. doi:10.1002/asl.304

    Article  Google Scholar 

  • Nogia P, Sidhu GK, Mehrotra R, Mehrotra S (2016) Capturing atmospheric carbon: biological and nonbiological methods. Int J Low Carbon Technol 11(2):266–274. doi:10.1093/ijlct/ctt077

    Article  Google Scholar 

  • O’Neill BC, Dalton M, Fuchs R, Jiang L, Pachauri S, Zigova K (2010) Global demographic trends and future carbon emissions. Proc Natl Acad Sci USA 107(41):17521–17526. doi:10.1073/pnas.1004581107

    Article  Google Scholar 

  • Peters GP, Hertwich EG (2008) CO2 embodied in international trade with implications for global climate policy. Environ Sci Technol 42(5):1401–1407. doi:10.1021/es072023k

    Article  CAS  Google Scholar 

  • Peters GP, Andrew RM, Boden T, Canadell JG, Ciais P, Le Quéré C, Marland G, Raupach MR, Wilson C (2013) Commentary: the challenge to keep global warming below 2 degrees C. Nature Clim Change 3(1):4–6

    Article  Google Scholar 

  • Pierce JR, Weisenstein DK, Heckendorn P, Peter T, Keith DW (2010) Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft. Geophys Res Lett 37. doi:10.1029/2010gl043975

  • Post WM, Amonette JE, Birdsey R, Garten CT, Jr., Izaurralde RC, Jardine PM, Jastrow J, Lal R, Marland G, McCarl BA, Thomson AM, West TO, Wullschleger SD, Metting FB (2009) Terrestrial biological carbon sequestration: science for enhancement and implementation. In: McPherson BJ, Sundquist ET (eds) Carbon sequestration and its role in the global carbon cycle, vol 183. Geophysical Monograph Series. American Geophysical Union, Washington, DC, pp 73–88. doi:10.1029/2008gm000753

  • Prentice IC, Harrison SP, Bartlein PJ (2011) Global vegetation and terrestrial carbon cycle changes after the last ice age. New Phytool 189(4):988–998. doi:10.1111/j.1469-8137.2010.03620.x

    Article  CAS  Google Scholar 

  • Preston CJ (2013) Ethics and geoengineering: reviewing the moral issues raised by solar radiation management and carbon dioxide removal. Wiley Interdiscip Rev Clim Change 4(1):23–37. doi:10.1002/wcc.198

    Article  Google Scholar 

  • Ramankutty N, Foley JA (1999) Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob Biogeochem Cy 13(4):997–1027. doi:10.1029/1999GB900046

    Article  CAS  Google Scholar 

  • Rasch PJ, Tilmes S, Turco RP, Robock A, Oman L, Chen C-C, Stenchikov GL, Garcia RR (2008) An overview of geoengineering of climate using stratospheric sulphate aerosols. Philos T R Soc A 366(1882):4007–4037. doi:10.1098/rsta.2008.0131

    Article  CAS  Google Scholar 

  • Rau GH (2008) Electrochemical splitting of calcium carbonate to increase solution alkalinity: implications for mitigation of carbon dioxide and ocean acidity. Environ Sci Technol 42(23):8935–8940. doi:10.1021/es800366q

    Article  CAS  Google Scholar 

  • Raupach MR, Marland G, Ciais P, Le Quéré C, Canadell JG, Klepper G, Field CB (2007) Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci USA 104(24):10288–10293. doi:10.1073/pnas.0700609104

    Article  CAS  Google Scholar 

  • Reilly J, Melillo J, Cai Y, Kicklighter D, Gurgel A, Paltsev S, Cronin T, Sokolov A, Schlosser A (2012) Using land to mitigate climate change: hitting the target, recognizing the trade-offs. Environ Sci Technol 46(11):5672–5679. doi:10.1021/es2034729

    Article  CAS  Google Scholar 

  • Rickels W, Klepper G, Dovern J, Betz G, Brachatzek N, Cacean S, Güssow K, J. H, Hiller S, Hoose C, Leisner T, Oschlies A, Platt U, Proelß A, Renn O, Schäfer SMZ (2011) Large-scale intentional interventions into the climate system? Assessing the climate engineering debate. Scoping report conducted on behalf of the German Federal Ministry of Education and Research (BMBF). Kiel Earth Institute, Kiel, 170 p

    Google Scholar 

  • Ridgwell A, Singarayer JS, Hetherington AM, Valdes PJ (2009) Tackling regional climate change by leaf albedo Bio-geoengineering. Curr Biol 19(2):146–150. doi:10.1016/j.cub.2008.12.025

    Article  CAS  Google Scholar 

  • Robock A, Marquardt A, Kravitz B, Stenchikov G (2009) Benefits, risks, and costs of stratospheric geoengineering. Geophys Res Lett 36. doi:10.1029/2009gl039209

  • Rogelj J, Schaeffer M, Meinshausen M, Knutti R, Alcamo J, Riahi K, Hare W (2015) Zero emission targets as long-term global goals for climate protection. Environ Res Lett 10(10):105007. doi:10.1088/1748-9326/10/10/105007

    Article  Google Scholar 

  • Rose SK, Kriegler E, Bibas R, Calvin K, Popp A, van Vuuren DP, Weyant J (2014) Bioenergy in energy transformation and climate management. Clim Change 123(3–4):477–493. doi:10.1007/s10584-013-0965-3

    Article  Google Scholar 

  • Rosenberg JN, Mathias A, Korth K, Betenbaugh MJ, Oyler GA (2011) Microalgal biomass production and carbon dioxide sequestration from an integrated ethanol biorefinery in Iowa: a technical appraisal and economic feasibility evaluation. Biomass Bioenerg 35(9):3865–3876. doi:10.1016/j.biombioe.2011.05.014

    Article  CAS  Google Scholar 

  • Royal Society (2009) Geoengineering the climate: science, governance and uncertainty. The Royal Society, Report 10/09 London, 82 p

    Google Scholar 

  • Running SW (2012) A measurable planetary boundary for the biosphere. Science 337(6101):1458–1459. doi:10.1126/science.1227620

    Article  CAS  Google Scholar 

  • Schneider SH (1996) Geoengineering: could or should we do it? Clim Change 33(3):291–302. doi:10.1007/bf00142577

    Article  CAS  Google Scholar 

  • Schneider SH (2001) Earth systems engineering and management. Nature 409(6818):417–421. doi:10.1038/35053203

    Article  CAS  Google Scholar 

  • Schneider SH, Semenov S, Patwardhan A, Burton I, Magadza CHD, Oppenheimer M, Pittock AB, Rahman A, Smith JB, Suarez A, Yamin F (2007) Assessing key vulnerabilities and the risk from climate change. Climate change 2007. In: Parry ML, Canziani OF, Palutikof JP, Linden PJvd, Hanson CE (eds) Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 779–810

    Google Scholar 

  • Schulte P, van Geldern R, Freitag H, Karim A, Negrel P, Petelet-Giraud E, Probst A, Probst J-L, Telmer K, Veizer J, Barth JAC (2011) Applications of stable water and carbon isotopes in watershed research: weathering, carbon cycling, and water balances. Earth Sci Rev 109(1–2):20–31. doi:10.1016/j.earscirev.2011.07.003

    Article  CAS  Google Scholar 

  • Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H, Mazhitova G, Nelson FE, Rinke A, Romanovsky VE, Shiklomanov N, Tarnocai C, Venevsky S, Vogel JG, Zimov SA (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58(8):701–714. doi:10.1641/b580807

    Article  Google Scholar 

  • Sekiya T, Sudo K, Nagai T (2016) Evolution of stratospheric sulfate aerosol from the 1991 Pinatubo eruption: roles of aerosol microphysical processes. J Geophys Res-Atmos 121(6):2911–2938. doi:10.1002/2015jd024313

    Article  CAS  Google Scholar 

  • Selosse S, Ricci O (2014) Achieving negative emissions with BECCS (bioenergy with carbon capture and storage) in the power sector: new insights from the TIAM-FR (TIMES Integrated Assessment Model France) model. Energy 76:967–975. doi:10.1016/j.energy.2014.09.014

    Article  Google Scholar 

  • Shackley S, Reiner D, Upham P, de Coninck H, Sigurthorsson G, Anderson J (2009) The acceptability of CO2 capture and storage (CCS) in Europe: an assessment of the key determining factors Part 2. The social acceptability of CCS and the wider impacts and repercussions of its implementation. Int J Greenh Gas Con 3(3):344–356. doi:10.1016/j.ijggc.2008.09.004

  • Shaver GR, Billings WD, Chapin FS, Giblin AE, Nadelhoffer KJ, Oechel WC, Rastetter EB (1992) Global change and the carbon balance of Arctic ecosystems. Bioscience 42(6):433–441. doi:10.2307/1311862

    Article  Google Scholar 

  • Singarayer JS, Ridgwell A, Irvine P (2009) Assessing the benefits of crop albedo bio-geoengineering. Environ Res Lett 4(4). doi:10.1088/1748-9326/4/4/045110

  • Smith WK, Zhao M, Running SW (2012) Global bioenergy capacity as constrained by observed biospheric productivity rates. Bioscience 62(10):911–922. doi:10.1525/bio.2012.62.10.11

    Article  Google Scholar 

  • Smith P, Haberl H, Popp A, K-h Erb, Lauk C, Harper R, Tubiello FN, de Siqueira Pinto A, Jafari M, Sohi S, Masera O, Boettcher H, Berndes G, Bustamante M, Ahammad H, Clark H, Dong H, Elsiddig EA, Mbow C, Ravindranath NH, Rice CW, Abad CR, Romanovskaya A, Sperling F, Herrero M, House JI, Rose S (2013) How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob Chang Biol 19(8):2285–2302. doi:10.1111/gcb.12160

    Article  Google Scholar 

  • Socolow R, Hotinski R, Greenblatt JB, Pacala S (2004) Solving the climate problem: technologies available to curb CO2 emissions. Environment 46(10):8–19

    Article  Google Scholar 

  • Spreng D, Marland G, Weinberg AM (2007) CO2 capture and storage: another Faustian Bargain? Energy Policy 35(2):850–854. doi:10.1016/j.enpol.2006.10.009

    Article  Google Scholar 

  • Steckel JC, Jakob M, Marschinski R, Luderer G (2011) From carbonization to decarbonization?-Past trends and future scenarios for China’s CO2 emissions. Energy Policy 39(6):3443–3455. doi:10.1016/j.enpol.2011.03.042

    Article  CAS  Google Scholar 

  • Strong AL, Cullen JJ, Chisholm SP (2009) Ocean fertilization: science, policy, and commerce

    Google Scholar 

  • Tavoni M, Socolow R (2013) Modeling meets science and technology: an introduction to a special issue on negative emissions. Clim Change 118(1):1–14. doi:10.1007/s10584-013-0757-9

    Article  Google Scholar 

  • Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Beneficial biofuels: the food, energy, and environment trilemma. Science 325(5938):270–271. doi:10.1126/science.1177970

    Article  CAS  Google Scholar 

  • Tilmes S, Kinnison DE, Garcia RR, Salawitch R, Canty T, Lee-Taylor J, Madronich S, Chance K (2012) Impact of very short-lived halogens on stratospheric ozone abundance and UV radiation in a geo-engineered atmosphere. Atmos Chem Phys 12(22):10945–10955. doi:10.5194/acp-12-10945-2012

    Article  CAS  Google Scholar 

  • Tilmes S, Fasullo J, Lamarque J-F, Marsh DR, Mills M, Alterskjaer K, Muri H, Kristjansson JE, Boucher O, Schulz M, Cole JNS, Curry CL, Jones A, Haywood J, Irvine PJ, Ji D, Moore JC, Karam DB, Kravitz B, Rasch PJ, Singh B, Yoon J-H, Niemeier U, Schmidt H, Robock A, Yang S, Watanabe S (2013) The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). J Geophys Res-Atmos 118(19):11036–11058. doi:10.1002/jgrd.50868

    Article  Google Scholar 

  • Tokarska KB, Zickfeld K (2015) The effectiveness of net negative carbon dioxide emissions in reversing anthropogenic climate change. Environ Res Lett 10(9). doi:10.1088/1748-9326/10/9/094013

  • Torvanger A, Lund MT, Rive N (2013) Carbon capture and storage deployment rates: needs and feasibility. Mitig Adapt Strat Glob Change 18(2):187–205. doi:10.1007/s11027-012-9357-7

    Article  Google Scholar 

  • Tum M, Zeidler JN, Gunther KP, Esch T (2016) Global NPP and straw bioenergy trends for 2000–2014. Biomass Bioenerg 90:230–236. doi:10.1016/j.biombioe.2016.03.040

    Article  Google Scholar 

  • UNFCCC (2009) Copenhagen Accord conference of the parties, fifteenth session, Copenhagen, 7–18 Dec 2009. United Nations Framework on Climate Change Conference (UNFCCC), UNFCCC/CP/2009/L.7 Copenhagen, Denmark

    Google Scholar 

  • UNFCCC (2010) Report of the conference of the parties. United Nations Framework Convention on Climate Change (UNFCCC), FCCC/CP/2010/7/Add.1 Cancun, Mexico, 31 p

    Google Scholar 

  • Vaughan NE, Lenton TM (2011) A review of climate geoengineering proposals. Clim Change 109(3–4):745–790. doi:10.1007/s10584-011-0027-7

    Article  Google Scholar 

  • Verma P, Stephens JC, IEEE (2006) Environmental advocacy groups’ perspectives on carbon capture and storage. In: 2006 IEEE EIC climate change conference, vols 1 and 2, pp 51–55

    Google Scholar 

  • WMO (2016) World Meteorological Organization (WMO) greenhouse gas bulletin: the state of greenhouse gases in the atmosphere based on global observation through 2015. Bulletin No. 12. World Meteorological Organization (WMO), Global Atmosphere Watch (GAW), Geneva, Switzerland, 8 p

    Google Scholar 

  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Comm 1. doi:10.1038/ncomms1053

  • Zhang Z, Moore JC, Huisingh D, Zhao Y (2015) Review of geoengineering approaches to mitigating climate change. J Cleaner Prod 103:898–907. doi:10.1016/j.jclepro.2014.09.076

    Article  CAS  Google Scholar 

  • Zhou S, Flynn PC (2005) Geoengineering downwelling ocean currents: a cost assessment. Clim Change 71(1–2):203–220. doi:10.1007/s10584-005-5933-0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A.N. Ussiri .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ussiri, D.A., Lal, R. (2017). Mitigation of Climate Change: Introduction. In: Carbon Sequestration for Climate Change Mitigation and Adaptation. Springer, Cham. https://doi.org/10.1007/978-3-319-53845-7_8

Download citation

Publish with us

Policies and ethics