Skip to main content

Abstract

The contemporary global carbon (C) cycling involves the exchanges of C within and between the atmosphere, the oceans, and biosphere. The C may be transferred from one reservoir to another in seconds (e.g., the fixation of atmospheric carbon dioxide (CO2) by photosynthesis) or over millennia [e.g., the accumulation of fossil carbon (coal, oil, gas) through deposition and diagenesis of organic matter (OM)]. The focus of this chapter is on the exchange of CO2 occurring over the scale of months to a few centuries that are important for the cycling of C over years to decades with the focus on human influence starting from Industrial Era (1750). The cycling of C is important because it approximates the flows of energy around the Earth. The increased use of fossil fuels has led to increase in atmospheric concentration of CO2 and methane (CH4), which are the two most important greenhouse gases (GHGs). Addition of GHGs to the atmosphere enhances the greenhouse effect and is the main cause of the global warming. The rate and extent of the warming depend, in part, on changes in global C cycle. The processes responsible for adding C to, and withdrawing it from, the atmosphere are the part of the global C cycling. Some of the processes that add C to the atmosphere such as the combustion of fossil fuels and changes in land use and land management are under direct human control. Similarly human beings can control removal of CO2 through afforestation and/or reforestation as well as restoration of degraded lands . Others, such as the accumulation of carbon in the oceans or on land as a result of changes in global climate are not under direct human control except through controlling rates of greenhouse gas (GHG) emissions and therefore, climatic change. Because CO2 is more important GHG, and is expected to continue to be in the future, understanding the global C cycle is a vital part of managing the global climate. This chapter will address, first, the natural flows of C on the Earth, then the anthropogenic sources of C to the atmosphere and the sinks of carbon on land and in the oceans that have kept the atmospheric accumulation of CO2 lower than it would otherwise have been. Since 1750, the atmospheric concentration of CO2 has increased by ~44% from 278 ± 5 ppm in 1750 to 400.0 ± 0.1 ppm in 2015, corresponding to atmospheric burden of 260 ± 5 Pg C, largely as a result of fossil fuel combustion, but also from changes in land use and management. At the beginning of Industrial Revolution, the emissions of CO2 were from land use and land use change; now the emissions are largely (~90%) from fossil fuels. The decadal annual rates of fossil fuel CO2 emissions increased from 3.1 ± 0.2 Pg C yr−1 in 1960s to 9.3 ± 0.5 Pg C yr−1 for 2006–2015, while land use CO2 emission decreased from 1.5 ± 0.5 Pg C yr−1 to 1.0 ± 0.5 Pg yr−1 over the same period. The total global anthropogenic CO2 emission from 1750 to 2015 is estimated at 600 ± 70 Pg C, of which, fossil fuels and cement production is estimated at 410 ± 20 Pg C and land use change emission at 190 ± 65 Pg C. About 43% of the total anthropogenic CO2 emission or 260 ± 5 Pg C remained in the atmosphere, while ocean and terrestrial ecosystems sinks were 28 and 27%, respectively. The decadal atmospheric CO2 growth increased from 1.7 ± 0.1 Pg C yr−1 in the 1960s to 4.5 ± 0.1 Pg C yr−1 during 2006–2015, with ocean and terrestrial sinks increasing roughly in line with atmospheric increase over the last 50 years. Although there is no clear signal globally of a saturation of land sink strength, there are some indications suggesting that the ocean total CO2 uptake rate may have declined in recent decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson AJ, Bates NR, Jeffries MA, Freeman K, Davidson C, Stringer S, Betzler E, Mackenzie FT (2013) Clues from current high CO2 environments on the effects of ocean acidification on CaCO3 preservation. Aquat Geochem 19(5–6):353–369. doi:10.1007/s10498-013-9210-y

    Article  CAS  Google Scholar 

  • Andres RJ, Boden TA, Bréon FM, Ciais P, Davis S, Erickson D, Gregg JS, Jacobson A, Marland G, Miller J, Oda T, Olivier JGJ, Raupach MR, Rayner P, Treanton K (2012) A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences 9(5):1845–1871. doi:10.5194/bg-9-1845-2012

    Article  CAS  Google Scholar 

  • Andres RJ, Boden TA, Higdon D (2014) A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission. Tellus B 66. doi:10.3402/tellusb.v66.23616

  • Angert A, Biraud S, Bonfils C, Henning CC, Buermann W, Pinzon J, Tucker CJ, Fung I (2005) Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proc Natl Acad Sci USA 102(31):10823–10827. doi:10.1073/pnas.0501647102

    Article  CAS  Google Scholar 

  • Anisimov OA, Nelson FE, Pavlov AV (1999) Predictive scenerios of permafrost development under conditions of global climate change in the XXI century. Earth Cryosphere 3:15–25

    Google Scholar 

  • Archer D, Kheshgi H, MaierReimer E (1997) Multiple timescales for neutralization of fossil fuel CO2. Geophys Res Lett 24(4):405–408. doi:10.1029/97gl00168

    Article  CAS  Google Scholar 

  • Archer D, Eby M, Brovkin V, Ridgwell A, Cao L, Mikolajewicz U, Caldeira K, Matsumoto K, Munhoven G, Montenegro A, Tokos K (2009) Atmospheric lifetime of fossil fuel carbon dioxide. Annu Rev Earth Pl Sci 37:117–134. doi:10.1146/annurev.earth.031208.100206

    Article  CAS  Google Scholar 

  • Arrhenius S (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Philos Mag 41:237–276

    Article  CAS  Google Scholar 

  • Arvidson T, Gasch J, Goward SN (2001) Landsat 7’s long-term acquisition plan—an innovative approach to building a global imagery archive. Remote Sens Environ 78(1–2):13–26. doi:10.1016/s0034-4257(01)00263-2

    Article  Google Scholar 

  • Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9(1):53–60. doi:10.1890/100014

    Article  Google Scholar 

  • Aumont O, Orr JC, Monfray P, Ludwig W, Amiotte-Suchet P, Probst JL (2001) Riverine-driven interhemispheric transport of carbon. Glob Biogeochem Cycles 15(2):393–405. doi:10.1029/1999gb001238

    Article  CAS  Google Scholar 

  • Baccini A, Goetz SJ, Walker WS, Laporte NT, Sun M, Sulla-Menashe D, Hackler J, Beck PSA, Dubayah R, Friedl MA, Samanta S, Houghton RA (2012) Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat Clim Change 2(3):182–185. doi:10.1038/nclimate1354

    Article  CAS  Google Scholar 

  • Bala G, Caldeira K, Wickett M, Phillips TJ, Lobell DB, Delire C, Mirin A (2007) Combined climate and carbon-cycle effects of large-scale deforestation. Proc Natl Acad Sci USA 104(16):6550–6555. doi:10.1073/pnas.0608998104

    Article  CAS  Google Scholar 

  • Ballantyne AP, Andres R, Houghton R, Stocker BD, Wanninkhof R, Anderegg W, Cooper LA, DeGrandpre M, Tans PP, Miller JB, Alden C, White JWC (2015) Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty. Biogeosciences 12(8):2565–2584. doi:10.5194/bg-12-2565-2015

    Article  Google Scholar 

  • Balter M (2007) Seeking agriculture’s ancient roots. Science 316(5833):1830–1835. doi:10.1126/science.316.5833.1830

    Article  CAS  Google Scholar 

  • Barker T, Bashmakov I, Alharthi A, Amann M, Cifuentes L, Drexhage J, Duan M, Edenhofer O, Flannery B, Grubb M, Hoogwijk M, Ibitoye FI, Jepma CJ, Pizer WA, Yamaji K (2007) Mitigation from a cross-sectoral perspective In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom, New York, NY, USA, pp 690–690

    Google Scholar 

  • Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2(9):598–600. doi:10.1038/ngeo618

    Article  CAS  Google Scholar 

  • Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rodenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendaal E, Viovy N, Williams C, Woodward FI, Papale D (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329(5993):834–838. doi:10.1126/science.1184984

    Article  CAS  Google Scholar 

  • Betts RA (2000) Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408(6809):187–190. doi:10.1038/35041545

    Article  CAS  Google Scholar 

  • Blanco G, Gerlagh R, Suh S, Barrett J, de Coninck HC, Morejon CFD, Mathur R, Nakicenovic N, Ahenkora AO, J. Pan HP, J. Rice RR, Smith SJ, Stern DI, Toth FL, Zhou P (2014) Drivers, trends and mitigation. In: Edenhofer O, Pichs-Madruga R, Sokona Y et al (eds) Climate change 2014: mitigation of climate change. Contribution of Working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom, New York, NY, USA, pp 351–411

    Google Scholar 

  • Boden T, Andres R, Marland G (2016) Global, regional and national fossil fuel CO2 emissions. Oak Ridge National Laboratory, United States Department of Energy. On line at: www.cdiac.ornl.gov/trends/emis/overview_2010.html. Accessed October 2016

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320(5882):1444–1449. doi:10.1126/science.1155121

    Article  CAS  Google Scholar 

  • Bonan GB, Levis S (2010) Quantifying carbon-nitrogen feedbacks in the community land model (CLM4). Geophys Res Lett 37. doi:10.1029/2010gl042430

  • Bousquet P, Peylin P, Ciais P, Le Quere C, Friedlingstein P, Tans PP (2000) Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290(5495):1342–1346. doi:10.1126/science.290.5495.1342

    Article  CAS  Google Scholar 

  • Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA 102(42):15144–15148. doi:10.1073/pnas.0505734102

    Article  CAS  Google Scholar 

  • Broecker WS (2001) A ewing symposium on the contemporary carbon cycle. Glob Biogeochem Cycles 15(4):1031–1033. doi:10.1029/2001gb001418

    Article  CAS  Google Scholar 

  • Broecker WS, Takahashi T, Simpson HJ, Peng TH (1979) Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206(4417):409–418. doi:10.1126/science.206.4417.409

    Article  CAS  Google Scholar 

  • Broecker WS, Sutherland S, Smethie W, Peng TH, Ostlund G (1995) Oeanic radiocarbon: separation of natural and bomb components. Glob Biogeochem Cycles 9(2):263–288. doi:10.1029/95gb00208

    Article  Google Scholar 

  • Canadell JG, Schulze ED (2014) Global potential of biospheric carbon management for climate mitigation. Nat Commun 5. doi:10.1038/ncomms6282

  • Canadell JG, Le Quere C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007a) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104(47):18866–18870. doi:10.1073/pnas.0702737104

    Article  CAS  Google Scholar 

  • Canadell JG, Pataki DE, Gifford R, Houghton RA, Luo Y, Raupach MR, Smith P, Steffen W (2007b) Saturation of the terrestrial carbon sink. In: Canadell JG, Pataki DE, Pitelka LF (eds) Terrestrial ecosystems in a changing world. Springer, Berlin Heidelberg, pp 59–78. doi:10.1007/978-3-540-32730-1_6

  • Caspersen JP, Pacala SW, Jenkins JC, Hurtt GC, Moorcroft PR, Birdsey RA (2000) Contributions of land-use history to carbon accumulation in US forests. Science 290(5494):1148–1151. doi:10.1126/science.290.5494.1148

    Article  CAS  Google Scholar 

  • Chapin FS III, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, Cole JJ, Goulden ML, Harden JW, Heimann M, Howarth RW, Matson PA, McGuire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML, Ryan MG, Running SW, Sala OE, Schlesinger WH, Schulze ED (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9(7):1041–1050. doi:10.1007/s10021-005-0105-7

    Article  CAS  Google Scholar 

  • Chen CTA (2004) Exchanges of carbon in the coastal seas. In: Field CB, Raupach MR (eds) Global carbon cycle: integrating humans, climate, and the natural world. SCOPE 62. Island Press, Washington, D.C., pp 341–351

    Google Scholar 

  • Chuck A, Tyrrell T, Totterdell IJ, Holligan PM (2005) The oceanic response to carbon emissions over the next century: investigation using three ocean carbon cycle models. Tellus B 57(1):70–86. doi:10.1111/j.1600-0889.2005.00127.x

    Article  Google Scholar 

  • Ciais P, Denning AS, Tans PP, Berry JA, Randall DA, Collatz GJ, Sellers PJ, White JWC, Trolier M, Meijer HAJ, Francey RJ, Monfray P, Heimann M (1997) A three-dimensional synthesis study of delta 18O in atmospheric CO2 .1. Surface fluxes. J Geophys Res-Atmos 102(D5): 5857–5872. doi:10.1029/96jd02360

  • Ciais P, Sabine CL, Govindasamy B, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quere C, Myeneni R, Piao S, Thornton P (2013) Carbon and other boigeochemical cycles. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, New York, USA, pp 465–570

    Google Scholar 

  • Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J (2001) Measuring net primary production in forests: concepts and field methods. Ecol Appl 11(2):356–370

    Article  Google Scholar 

  • Claussen M, Brovkin V, Ganopolski A (2001) Biogeophysical versus biogeochemical feedbacks of large-scale land cover change. Geophys Res Lett 28(6):1011–1014. doi:10.1029/2000gl012471

    Article  CAS  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10(1):171–184. doi:10.1007/s10021-006-9013-8

    Article  CAS  Google Scholar 

  • Cox P, Jones C (2008) Climate change—illuminating the modern dance of climate and CO2. Science 321(5896):1642–1644. doi:10.1126/science.1158907

    Article  CAS  Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biol 7(4):357–373. doi:10.1046/j.1365-2486.2001.00383.x

    Article  Google Scholar 

  • da Cunha LC, Buitenhuis ET, Le Quere C, Giraud X, Ludwig W (2007) Potential impact of changes in river nutrient supply on global ocean biogeochemistry. Glob Biogeochem Cycles 21(4). doi:10.1029/2006gb002718

  • Dai M, Yin Z, Meng F, Liu Q, Cai W-J (2012) Spatial distribution of riverine DOC inputs to the ocean: an updated global synthesis. Curr Opin Environ Sust 4(2):170–178. doi:10.1016/j.cosust.2012.03.003

    Article  Google Scholar 

  • Davis SJ, Burney JA, Pongratz J, Caldeira K (2014) Methods for attributing land-use emissions to products. Carbon Manage 5(2):233–245

    Article  CAS  Google Scholar 

  • Dawes MA, Haettenschwiler S, Bebi P, Hagedorn F, Handa IT, Koerner C, Rixen C (2011) Species-specific tree growth responses to 9 years of CO2 enrichment at the alpine treeline. J Ecol 99(2):383–394. doi:10.1111/j.1365-2745.2010.01764.x

    Google Scholar 

  • DeFries RS, Field CB, Fung I, Collatz GJ, Bounoua L (1999) Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity. Glob Biogeochem Cycles 13(3):803–815. doi:10.1029/1999gb900037

    Article  CAS  Google Scholar 

  • DeFries RS, Houghton RA, Hansen MC, Field CB, Skole D, Townshend J (2002) Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. Proc Natl Acad Sci USA 99(22):14256–14261. doi:10.1073/pnas.182560099

    Article  CAS  Google Scholar 

  • DeVries T (2014) The oceanic anthropogenic CO2 sink: storage, air-sea fluxes, and transports over the industrial era. Glob Biogeochem Cycles 28(7):631–647. doi:10.1002/2013gb004739

    Article  CAS  Google Scholar 

  • Dlugokencky EJ, Tans P (2016) Trends in atmospheric carbon dioxide. National Oceanic & Atmospheric Administration, Earth System Research Laboratory (NOAA/ESRL), Global Monitoring Division. http: www.esrl.noaa.gov/gmd/ccgg/trends. Accessed October 2016

  • Dommain R, Couwenberg J, Joosten H (2011) Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quat Sci Rev 30(7–8):999–1010. doi:10.1016/j.quascirev.2011.01.018

    Article  Google Scholar 

  • Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4(5):293–297. doi:10.1038/ngeo1123

    Article  CAS  Google Scholar 

  • Downing JA, Cole JJ, Middelburg JJ, Striegl RG, Duarte CM, Kortelainen P, Prairie YT, Laube KA (2008) Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Glob Biogeochem Cycles 22(1). doi:10.1029/2006gb002854

  • Eliasch J (2008) Climate change: financing global forests: Eliasch review. Earthscan, UK

    Google Scholar 

  • Ellis EC (2011) Anthropogenic transformation of the terrestrial biosphere. Philos Trans R Soc Series A 369(1938):1010–1035. doi:10.1098/rsta.2010.0331

    Article  Google Scholar 

  • Elsig J, Schmitt J, Leuenberger D, Schneider R, Eyer M, Leuenberger M, Joos F, Fischer H, Stocker TF (2009) Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core. Nature 461(7263):507–510. doi:10.1038/nature08393

    Article  CAS  Google Scholar 

  • Etheridge D, Steele L, Langenfelds R, Francey R, Barnola JM, Morgan V (1996) Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J Geophys Res-Atmos 101(D2):4115–4128

    Article  CAS  Google Scholar 

  • Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281(5374):200–206. doi:10.1126/science.281.5374.200

    Article  CAS  Google Scholar 

  • Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Hogberg P, Linder S, Mackenzie FT, Moore B, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290(5490):291–296. doi:10.1126/science.290.5490.291

    Article  CAS  Google Scholar 

  • Fang CM, Smith P, Moncrieff JB, Smith JU (2005) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433(7021):57–59. doi:10.1038/nature03138

    Article  CAS  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281(5374):237–240. doi:10.1126/science.281.5374.237

    Article  CAS  Google Scholar 

  • Foley JA, Monfreda C, Ramankutty N, Zaks D (2007) Our share of the planetary pie. Proc Natl Acad Sci USA 104(31):12585–12586. doi:10.1073/pnas.0705190104

    Article  CAS  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478(7369):337–342. doi:10.1038/nature10452

    Article  CAS  Google Scholar 

  • Francey RJ, Trudinger CM, van der Schoot M, Law RM, Krummel PB, Langenfelds RL, Paul Steele L, Allison CE, Stavert AR, Andres RJ, Rodenbeck C (2013) Atmospheric verification of anthropogenic CO2 emission trends. Nat Clim Change 3:520–524. doi:10.1038/nclimate1817

    Article  CAS  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19(14):3337–3353. doi:10.1175/jcli3800.1

    Article  Google Scholar 

  • Friedlingstein P, Houghton RA, Marland G, Hackler J, Boden TA, Conway TJ, Canadell JG, Raupach MR, Ciais P, Le Quere C (2010) Update on CO2 emissions. Nat Geosci 3(12):811–812. doi:10.1038/ngeo1022

    Article  CAS  Google Scholar 

  • Friedlingstein P, Andrew RM, Rogelj J, Peters GP, Canadell JG, Knutti R, Luderer G, Raupach MR, Schaeffer M, van Vuuren DP, Le Quere C (2014) Persistent growth of CO2 emissions and implications for reaching climate targets. Nat Geosci 7(10):709–715. doi:10.1038/ngeo2248

    Article  CAS  Google Scholar 

  • Friend AD, Arneth A, Kiang NY, Lomas M, Ogee J, Roedenbeckk C, Running SW, Santaren J-D, Sitch S, Viovy N, Woodward FI, Zaehle S (2007) FLUXNET and modelling the global carbon cycle. Global Change Biol 13(3):610–633. doi:10.1111/j.1365-2486.2006.01223.x

    Article  Google Scholar 

  • Fuller DQ, van Etten J, Manning K, Castillo C, Kingwell-Banham E, Weisskopf A, Qin L, Sato Y-I, Hijmans RJ (2011) The contribution of rice agriculture and livestock pastoralism to prehistoric methane levels: an archaeological assessment. Holocene 21(5):743–759. doi:10.1177/0959683611398052

    Article  Google Scholar 

  • Fung IY, Doney SC, Lindsay K, John J (2005) Evolution of carbon sinks in a changing climate. Proc Natl Acad Sci USA 102(32):11201–11206. doi:10.1073/pnas.0504949102

    Article  CAS  Google Scholar 

  • Gibbs HK, Herold M (2007) Tropical deforestation and greenhouse gas emissions. Environ Res Lett 2(4). doi:10.1088/1748-9326/2/4/045021

  • Giglio L, Randerson JT, van der Werf GR (2013) Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J Geophys Res-Biogeo 118(1):317–328. doi:10.1002/jgrg.20042

    Article  Google Scholar 

  • Goetz S, Dubayah R (2011) Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change. Carbon Manage 2(3):231–244. doi:10.4155/cmt.11.18

    Article  Google Scholar 

  • Goetz SJ, Baccini A, Laporte NT, Johns T, Walker W, Kellndorfer J, Houghton RA, Sun M (2009) Mapping and monitoring carbon stocks with satellite observations: a comparison of methods. Carbon Balance Manage 4:2. doi:10.1186/1750-0680-4-2

    Article  CAS  Google Scholar 

  • Goldewijk KK (2001) Estimating global land use change over the past 300 years: the HYDE database. Glob Biogeochem Cycles 15(2):417–433. doi:10.1029/1999gb001232

    Article  Google Scholar 

  • Goudie A (2006) Human impact on the natural environment: past, present and future, 6th edn. Blakwell Publishing, Malden, USA, p 359

    Google Scholar 

  • Graven HD, Gruber N, Key R, Khatiwala S, Giraud X (2012) Changing controls on oceanic radiocarbon: New insights on shallow-to-deep ocean exchange and anthropogenic CO2 uptake. J Geophys Res-Oceans 117. doi:10.1029/2012jc008074

  • Gregg JS, Andres RJ, Marland G (2008) China: emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophys Res Lett 35(8). doi:10.1029/2007gl032887

  • Gruber N, Sarmiento JL, Stocker TF (1996) An improved method for detecting anthropogenic CO2 in the oceans. Glob Biogeochem Cycles 10(4):809–837. doi:10.1029/96gb01608

    Article  CAS  Google Scholar 

  • Gruber N, Friedlingstein P, Field CB, Valentini R, Heimann M, Richey JE, Lankao RC, Schultze E-D, Chen CTA (2004) The vulnerability of carbon cycle in the 21st century: an assessment of carbon-human interaction. In: Field CB, Raupach MR (eds) The global carbon cycle: intergrating humans, climate, and the natural world. SCOPE 62. Inland Press, Washington, D.C., pp 45–76

    Google Scholar 

  • Gruber N, Gloor M, Fletcher SEM, Doney SC, Dutkiewicz S, Follows MJ, Gerber M, Jacobson AR, Joos F, Lindsay K, Menemenlis D, Mouchet A, Mueller SA, Sarmiento JL, Takahashi T (2009) Oceanic sources, sinks, and transport of atmospheric CO2. Glob Biogeochem Cycles 23: GB1005. doi:10.1029/2008gb003349

  • Gullison RE, Frumhoff PC, Canadell JG, Field CB, Nepstad DC, Hayhoe K, Avissar R, Curran LM, Friedlingstein P, Jones CD, Nobre C (2007) Tropical forests and climate policy. Science 316(5827):985–986. doi:10.1126/science.1136163

    Article  CAS  Google Scholar 

  • Gurney KR, Eckels WJ (2011) Regional trends in terrestrial carbon exchange and their seasonal signatures. Tellus Ser B-Chem Phys Meteorol 63(3):328–339. doi:10.1111/j.1600-0889.2011.00534.x

    Article  CAS  Google Scholar 

  • Gurney KR, Law RM, Denning AS, Rayner PJ, Baker D, Bousquet P, Bruhwiler L, Chen YH, Ciais P, Fan S, Fung IY, Gloor M, Heimann M, Higuchi K, John J, Maki T, Maksyutov S, Masarie K, Peylin P, Prather M, Pak BC, Randerson J, Sarmiento J, Taguchi S, Takahashi T, Yuen CW (2002) Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415(6872):626–630. doi:10.1038/415626a

    Article  Google Scholar 

  • Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc Natl Acad Sci USA 104(31):12942–12947

    Article  CAS  Google Scholar 

  • Hall CAS, Uhlig J (1991) Refining estimates of carbon released from tropical land-use change. Can J For Res 21(1):118–131. doi:10.1139/x91-016

    Article  CAS  Google Scholar 

  • Hansen J, Nazarenko L, Ruedy R, Sato M, Willis J, Del Genio A, Koch D, Lacis A, Lo K, Menon S, Novakov T, Perlwitz J, Russell G, Schmidt GA, Tausnev N (2005) Earth’s energy imbalance: confirmation and implications. Science 308(5727):1431–1435. doi:10.1126/science.1110252

    Article  CAS  Google Scholar 

  • Hansen MC, Stehman SV, Potapov PV, Arunarwati B, Stolle F, Pittman K (2009) Quantifying changes in the rates of forest clearing in Indonesia from 1990 to 2005 using remotely sensed data sets. Environ Res Lett 4(3). doi:10.1088/1748-9326/4/3/034001

  • Harris NL, Brown S, Hagen SC, Saatchi SS, Petrova S, Salas W, Hansen MC, Potapov PV, Lotsch A (2012) Baseline map of carbon emissions from deforestation in tropical regions. Science 336(6088):1573–1576. doi:10.1126/science.1217962

    Article  CAS  Google Scholar 

  • Hartmann J, Jansen N, Duerr HH, Kempe S, Koehler P (2009) Global CO2-consumption by chemical weathering: what is the contribution of highly active weathering regions? Glob Planet Change 69(4):185–194. doi:10.1016/j.gloplacha.2009.07.007

    Article  Google Scholar 

  • Hegerl GC, Zwiers FW, Braconnot P, Gillett NP, Luo Y, Orsini JAM, Nicholls N, Penner JE, Stott PA (2007) Understanding and Attributing climate change. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom, New York, pp 665–745

    Google Scholar 

  • Holland EA, Braswell BH, Lamarque JF, Townsend A, Sulzman J, Muller JF, Dentener F, Brasseur G, Levy H, Penner JE, Roelofs GJ (1997) Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. J Geophys Res-Atmos 102(D13):15849–15866. doi:10.1029/96jd03164

    Article  CAS  Google Scholar 

  • Hönisch B, Hemming NG, Archer D, Siddall M, McManus JF (2009) Atmospheric arbon dioxide concentration across the mid-Pleistocene transition. Science 324(5934):1551–1554. doi:10.1126/science.1171477

    Article  CAS  Google Scholar 

  • Houghton RA (2007) Balancing the global carbon budget. Annu Rev Earth Pl Sci 35: 313-347. doi:10.1146/annurev.earth.35.031306.140057

  • Houghton RA (1999) The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B 51(2):298–313. doi:10.1034/j.1600-0889.1999.00013.x

    Article  Google Scholar 

  • Houghton RA (2003) The contemporary carbon cycle. In: Schlesinger WH (ed) Treatise on geochemistry, vol 8., BiogeochemistryElsevier Ltd., New York, pp 473–513

    Chapter  Google Scholar 

  • Houghton RA (2010) How well do we know the flux of CO2 from land-use change? Tellus B 62(5):337–351. doi:10.1111/j.1600-0889.2010.00473.x

    Article  CAS  Google Scholar 

  • Houghton RA (2013) Keeping management effects separate from environmental effects in terrestrial carbon accounting. Global Change Biol 19(9):2609–2612. doi:10.1111/gcb.12233

    Article  Google Scholar 

  • Houghton RA (2014) The contemporary carbon cycle. In: Turekian KK, Holland HD (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 399–435. doi:http://dx.doi.org/10.1016/B978-0-08-095975-7.00810-X

  • Houghton RA, Hobbie JE, Melillo JM, Moore B, Peterson BJ, Shaver GR, Woodwell GM (1983) Change in the carbon content of terrstrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol Mon 53(3):235–262. doi:10.2307/1942531

    Article  CAS  Google Scholar 

  • Houghton RA, Davidson EA, Woodwell GM (1998) Missing sinks, feedbacks, and understanding the role of terrestrial ecosystems in the global carbon balance. Glob Biogeochem Cycles 12(1):25–34. doi:10.1029/97gb02729

    Article  CAS  Google Scholar 

  • Houghton RA, House J, Pongratz J, Van der Werf G, DeFries R, Hansen M, Quéré CL, Ramankutty N (2012) Carbon emissions from land use and land-cover change. Biogeosciences 9(12):5125–5142

    Article  CAS  Google Scholar 

  • House JI, Prentice IC, Le Quere C (2002) Maximum impacts of future reforestation or deforestation on atmospheric CO2. Global Change Biol 8(11):1047–1052. doi:10.1046/j.1365-2486.2002.00536.x

    Article  Google Scholar 

  • Hurtt GC, Frolking S, Fearon MG, Moore B, Shevliakova E, Malyshev S, Pacala SW, Houghton RA (2006) The underpinnings of land-use history: three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands. Global Change Biol 12(7):1208–1229. doi:10.1111/j.1365-2486.2006.01150.x

    Article  Google Scholar 

  • Indermuhle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M, Deck B, Mastroianni D, Tschumi J, Blunier T, Meyer R, Stauffer B (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398(6723):121–126

    Article  CAS  Google Scholar 

  • Ise T, Dunn AL, Wofsy SC, Moorcroft PR (2008) High sensitivity of peat decomposition to climate change through water-table feedback. Nat Geosci 1(11):763–766. doi:10.1038/ngeo331

    Article  CAS  Google Scholar 

  • Ito A (2011) A historical meta-analysis of global terrestrial net primary productivity: are estimates converging? Global Change Biol 17(10):3161–3175. doi:10.1111/j.1365-2486.2011.02450.x

    Article  Google Scholar 

  • Jacobson AR, Fletcher SEM, Gruber N, Sarmiento JL, Gloor M (2007a) A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global-scale fluxes. Glob Biogeochem Cycles 21(2). doi:10.1029/2007gb003012

  • Jacobson AR, Fletcher SEM, Gruber N, Sarmiento JL, Gloor M (2007b) A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 2. Regional results. Glob Biogeochem Cycles 21(1). doi:10.1029/2006gb002703

  • Jansson C, Wullschleger SD, Kalluri UC, Tuskan GA (2010) Phytosequestration: carbon biosequestration by plants and the prospects of genetic engineering. Bioscience 60(9):685–696. doi:10.1525/bio.2010.60.9.6

    Article  Google Scholar 

  • Johnsen SJ, Clausen HB, Dansgaard W, Fuhrer K, Gundestrup N, Hammer CU, Iversen P, Jouzel J, Stauffer B, Steffensen JP (1992) Irregular glacial interglacials recorded in a new Greenland ice core. Nature 359(6393):311–313. doi:10.1038/359311a0

    Article  Google Scholar 

  • Joos F, Prentice IC (2004) A paleo-perspective on changes in atmospheric CO2 and climate. In: Field CB, Raupach MR (eds) The global carbon cycle: integrating humans, climate, and the natural world. SCOPE 62. Island Press, Washington, DC, pp 165–186

    Google Scholar 

  • Kato E, Kinoshita T, Ito A, Kawamiya M, Yamagata Y (2013) Evaluation of spatially explicit emission scenario of land-use change and biomass burning using a process-based biogeochemical model. J Land Use Sci 8(1):104–122. doi:10.1080/1747423X.2011.628705

    Article  Google Scholar 

  • Kawamura K, Nakazawa T, Aoki S, Sugawara S, Fujii Y, Watanabe O (2003) Atmospheric CO2 variations over the last three glacial-interglacial climatic cycles deduced from the Dome Fuji deep ice core, Antarctica using a wet extraction technique. Tellus B 55(2):126–137. doi:10.1034/j.1600-0889.2003.00050.x

    Article  Google Scholar 

  • Keeling CD, Adams JA, Ekdahl CA (1976) Atmospheric carbon dioxide variations at South Pole. Tellus 28(6):553–564

    Google Scholar 

  • Keeling CD, Piper SC, Bacastow RB, Wahlen M, Whorf TP, Heimann M, Meijer HA (2005) Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: observations and carbon cycle implications. In: Ehleringer JR, Cerling TE, Dearing MD (eds) A history of atmospheric CO2 and its effects on plants, animals, and ecosystems, vol ecological studies, vol 177., SpringerNew York, USA, pp 83–113

    Chapter  Google Scholar 

  • Keeling RF, Walker SJ, Piper SC, Bollenbacher AF (2015) Monthly atmospheric CO2 concentration data (1958 to present) derived from in situ air measurements at Mauna Loa Observatory, Hawaii. http://www.scrippsco2.ucsd.edu. Accessed 28 April 2015

  • Khatiwala S, Primeau F, Hall T (2009) Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 462(7271):346–U110. doi:10.1038/nature08526

  • Khatiwala S, Tanhua T, Fletcher SM, Gerber M, Doney SC, Graven HD, Gruber N, McKinley GA, Murata A, Rios AF, Sabine CL (2013) Global ocean storage of anthropogenic carbon. Biogeosciences 10(4):2169–2191. doi:10.5194/bg-10-2169-2013

    Article  CAS  Google Scholar 

  • Kirch PV (2005) Archaeology and global change: the Holocene record. Annu Rev Env Resour 30:409–440. doi:10.1146/annurev.energy.29.102403.140700

    Article  Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso JP, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284(5411):118–120. doi:10.1126/science.284.5411.118

    Article  CAS  Google Scholar 

  • Knorr W, Heimann M (1995) Impact of drought stress and other factors on seasonal land biosphere CO2 exchange studied through an atmospheric tracer transport model. Tellus B 47(4):471–489. doi:10.1034/j.1600-0889.47.issue4.7.x

    Article  Google Scholar 

  • Krausmann F, Erb KH, Gingrich S, Haberl H, Bondeau A, Gaube V, Lauk C, Plutzar C, Searchinger TD (2013) Global human appropriation of net primary production doubled in the 20th century. Proc Natl Acad Sci USA 110(25):10324–10329. doi:10.1073/pnas.1211349110

    Article  CAS  Google Scholar 

  • Kurz WA, Shaw CH, Boisvenue C, Stinson G, Metsaranta J, Leckie D, Dyk A, Smyth C, Neilson ET (2013) Carbon in Canada’s boreal forest—a synthesis. Environ Rev 21(4):260–292. doi:10.1139/er-2013-0041

    Article  CAS  Google Scholar 

  • Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson MJ (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Glob Biogeochem Cycles 14(2):639–654. doi:10.1029/1999gb001195

    Article  CAS  Google Scholar 

  • Laws EA, Falkowski PG, Smith WO, Ducklow H, McCarthy JJ (2000) Temperature effects on export production in the open ocean. Glob Biogeochem Cycles 14(4):1231–1246. doi:10.1029/1999gb001229

    Article  CAS  Google Scholar 

  • Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Conway TJ, Doney SC, Feely RA, Foster P, Friedlingstein P, Gurney K, Houghton RA, House JI, Huntingford C, Levy PE, Lomas MR, Majkut J, Metzl N, Ometto JP, Peters GP, Prentice IC, Randerson JT, Running SW, Sarmiento JL, Schuster U, Sitch S, Takahashi T, Viovy N, van der Werf GR, Woodward FI (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2(12):831–836. doi:10.1038/ngeo689

    Article  CAS  Google Scholar 

  • Le Quéré C, Takahashi T, Buitenhuis ET, Roedenbeck C, Sutherland SC (2010) Impact of climate change and variability on the global oceanic sink of CO2. Glob Biogeochem Cycles 24. doi:10.1029/2009gb003599

  • Le Quéré C, Moriarty R, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Friedlingstein P, Peters GP, Andres RJ, Boden TA, Houghton RA, House JI, Keeling RF, Tans P, Arneth A, Bakker DCE, Barbero L, Bopp L, Chang J, Chevallier F, Chini LP, Ciais P, Fader M, Feely RA, Gkritzalis T, Harris I, Hauck J, Ilyina T, Jain AK, Kato E, Kitidis V, Goldewijk KK, Koven C, Landschuetzer P, Lauvset SK, Lefevre N, Lenton A, Lima ID, Metzl N, Millero F, Munro DR, Murata A, Nabel JEMS, Nakaoka S, Nojiri Y, O’Brien K, Olsen A, Ono T, Perez FF, Pfeil B, Pierrot D, Poulter B, Rehder G, Roedenbeck C, Saito S, Schuster U, Schwinger J, Seferian R, Steinhoff T, Stocker BD, Sutton AJ, Takahashi T, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, van Heuven S, Vandemark D, Viovy N, Wiltshire A, Zaehle S, Zeng N (2015) Global carbon budget 2015. Earth Syst Sci Data 7(2):349–396. doi:10.5194/essd-7-349-2015

    Article  Google Scholar 

  • Le Quéré C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA, Keeling RF, Alin S, Andrews OD, Anthoni P, Barbero L, Bopp L, Chevallier F, Chini LP, Ciais P, Currie K, Delire C, Doney SC, Friedlingstein P, Gkritzalis T, Harris I, Hauck J, Haverd V, Hoppema M, Klein Goldewijk K, Jain AK, Kato E, Körtzinger A, Landschützer P, Lefèvre N, Lenton A, Lienert S, Lombardozzi D, Melton JR, Metzl N, Millero F, Monteiro PMS, Munro DR, Nabel JEMS, Nakaoka SI, O’Brien K, Olsen A, Omar AM, Ono T, Pierrot D, Poulter B, Rödenbeck C, Salisbury J, Schuster U, Schwinger J, Séférian R, Skjelvan I, Stocker BD, Sutton AJ, Takahashi T, Tian H, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Zaehle S (2016) Global carbon budget 2016. Earth Syst Sci Data 8(2):605–649. doi:10.5194/essd-8-605-2016

    Article  Google Scholar 

  • Lepers E, Lambin EF, Janetos AC, DeFries R, Achard F, Ramankutty N, Scholes RJ (2005) A synthesis of information on rapid land-cover change for the period 1981-2000. Bioscience 55(2):115–124. doi:10.1641/0006-3568(2005)055[0115:asoior]2.0.co;2

    Article  Google Scholar 

  • Levin I, Naegler T, Kromer B, Diehl M, Francey RJ, Gomez-Pelaez AJ, Steele LP, Wagenbach D, Weller R, Worthy DE (2010) Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus B 62(1):26–46. doi:10.1111/j.1600-0889.2009.00446.x

    Article  CAS  Google Scholar 

  • Lewis SL, Maslin MA (2015) Defining the anthropocene. Nature 519(7542):171–180. doi:10.1038/nature14258

    Article  CAS  Google Scholar 

  • Lloyd J, Farquhar GD (1996) The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status. 1. General principles and forest ecosystems. Funct Ecol 10(1):4–32. doi:10.2307/2390258

    Article  Google Scholar 

  • Longhurst A, Sathyendranath S, Platt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17(6):1245–1271. doi:10.1093/plankt/17.6.1245

    Article  Google Scholar 

  • Lovenduski NS, Gruber N, Doney SC (2008) Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Glob Biogeochem Cycles 22(3). doi:10.1029/2007gb003139

  • Lucht W, Prentice IC, Myneni RB, Sitch S, Friedlingstein P, Cramer W, Bousquet P, Buermann W, Smith B (2002) Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296(5573):1687–1689. doi:10.1126/science.1071828

    Article  CAS  Google Scholar 

  • Lüthi D, Le Floch M, Bereiter B, Blunier T, Barnola J-M, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature 453(7193):379–382. doi:10.1038/nature06949

    Article  CAS  Google Scholar 

  • Luyssaert S, Schulze ED, Borner A, Knohl A, Hessenmoller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455(7210):213–215. doi:10.1038/nature07276

    Article  CAS  Google Scholar 

  • Mackey B, Prentice IC, Steffen W, House JI, Lindenmayer D, Keith H, Berry S (2013) Untangling the confusion around land carbon science and climate change mitigation policy. Nat Clim Change 3(6):552–557. doi:10.1038/nclimate1804

    Article  CAS  Google Scholar 

  • Marland G, Rotty RM (1984) Carbon dioxide emissions from fossil-fuels: aprocedure for estimation and results for 1950-1982. Tellus B 36(4):232–261

    Article  Google Scholar 

  • McGill B (2015) Land use matters. Nature 520(7545):38–39

    Article  CAS  Google Scholar 

  • McGuire AD, Sitch S, Clein JS, Dargaville R, Esser G, Foley J, Heimann M, Joos F, Kaplan J, Kicklighter DW, Meier RA, Melillo JM, Moore B, Prentice IC, Ramankutty N, Reichenau T, Schloss A, Tian H, Williams LJ, Wittenberg U (2001) Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models. Glob Biogeochem Cycles 15(1):183–206. doi:10.1029/2000gb001298

    Article  CAS  Google Scholar 

  • McKinley GA, Fay AR, Takahashi T, Metzl N (2011) Convergence of atmospheric and North Atlantic carbon dioxide trends on multidecadal timescales. Nat Geosci 4(9):606–610. doi:10.1038/ngeo1193

    Article  CAS  Google Scholar 

  • McLeod E, Chmura GL, Bouillon S, Salm R, Bjork M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9(10):552–560. doi:10.1890/110004

    Article  Google Scholar 

  • McNeil BI, Matear RJ, Key RM, Bullister JL, Sarmiento JL (2003) Anthropogenic CO2 uptake by the ocean based on the global chlorofluorocarbon data set. Science 299(5604):235–239. doi:10.1126/science.1077429

    Article  CAS  Google Scholar 

  • Mulholland PJ, Elwood JW (1982) The role of lake and reservoir sediments as sinks in the pertubedglobal carbon cycle. Tellus 34(5):490–499

    Article  CAS  Google Scholar 

  • Murty D, Kirschbaum MUF, McMurtrie RE, McGilvray A (2002) Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Global Change Biol 8(2):105–123. doi:10.1046/j.1354-1013.2001.00459.x

    Article  Google Scholar 

  • Nadelhoffer KJ, Emmett BA, Gundersen P, Kjonaas OJ, Koopmans CJ, Schleppi P, Tietema A, Wright RF (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398(6723):145–148. doi:10.1038/18205

    Article  CAS  Google Scholar 

  • Neftel A, Moor E, Oeschger H, Stauffer B (1985) Evidence from polar ice cores for increase in atmospheric CO2 inthe past 2 centuries. Nature 315(6014):45–47. doi:10.1038/315045a0

    Article  CAS  Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300(5625):1560–1563. doi:10.1126/science.1082750

    Article  CAS  Google Scholar 

  • Newingham BA, Vanier CH, Charlet TN, Ogle K, Smith SD, Nowak RS (2013) No cumulative effect of 10 years of elevated CO2 on perennial plant biomass components in the Mojave Desert. Global Change Biol 19(7):2168–2181. doi:10.1111/gcb.12177

    Article  Google Scholar 

  • Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis P, Finzi AC, Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza GE, Schlesinger WH, Oren R (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102(50):18052–18056. doi:10.1073/pnas.0509478102

    Article  CAS  Google Scholar 

  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci USA 107(45):19368–19373. doi:10.1073/pnas.1006463107

    Article  CAS  Google Scholar 

  • Olofsson J, Hickler T (2008) Effects of human land-use on the global carbon cycle during the last 6000 years. Veg Hist Archaeobotany 17(5):605–615. doi:10.1007/s00334-007-0126-6

    Article  Google Scholar 

  • Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schafer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411(6836):469–472. doi:10.1038/35078064

    Article  CAS  Google Scholar 

  • Orr JC, Maier-Reimer E, Mikolajewicz U, Monfray P, Sarmiento JL, Toggweiler JR, Taylor NK, Palmer J, Gruber N, Sabine CL, Le Quere C, Key RM, Boutin J (2001) Estimates of anthropogenic carbon uptake from four three-dimensional global ocean models. Glob Biogeochem Cycles 15(1):43–60. doi:10.1029/2000gb001273

    Article  CAS  Google Scholar 

  • Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard RF, Ciais P, Moorcroft P, Caspersen JP, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon ME, Fan SM, Sarmiento JL, Goodale CL, Schimel D, Field CB (2001) Consistent land- and atmosphere-based US carbon sink estimates. Science 292(5525):2316–2320. doi:10.1126/science.1057320

    Article  CAS  Google Scholar 

  • Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson R, Pacala S, McGuire A, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333(6045):988–993. doi:10.1126/science.1201609

    Article  CAS  Google Scholar 

  • Peters GP, Marland G, Le Quere C, Boden T, Canadell JG, Raupach MR (2012) Rapid growth in CO2 emissions after the 2008-2009 global financial crisis. Nat Clim Change 2(1):2–4

    Article  CAS  Google Scholar 

  • Peters GP, Andrew RM, Boden T, Canadell JG, Ciais P, Le Quere C, Marland G, Raupach MR, Wilson C (2013) The challenge to keep global warming below 2°. C Nat Clim Change 3(1):4–6

    Article  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399(6735):429–436. doi:10.1038/20859

    Article  CAS  Google Scholar 

  • Pinter N, Fiedel S, Keeley JE (2011) Fire and vegetation shifts in the Americas at the vanguard of Paleoindian migration. Quat Sci Rev 30(3–4):269–272. doi:10.1016/j.quascirev.2010.12.010

    Article  Google Scholar 

  • Pitman AJ, de Noblet-Ducoudre N, Cruz FT, Davin EL, Bonan GB, Brovkin V, Claussen M, Delire C, Ganzeveld L, Gayler V, van den Hurk BJJM, Lawrence PJ, van der Molen MK, Mueller C, Reick CH, Seneviratne SI, Strengers BJ, Voldoire A (2009) Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophys Res Lett 36. doi:10.1029/2009gl039076

  • Pongratz J, Reick C, Raddatz T, Claussen M (2008) A reconstruction of global agricultural areas and land cover for the last millennium. Glob Biogeochem Cycles 22(3). doi:10.1029/2007gb003153

  • Pongratz J, Reick CH, Raddatz T, Claussen M (2009) Effects of anthropogenic land cover change on the carbon cycle of the last millennium. Glob Biogeochem Cycles 23. doi:10.1029/2009gb003488

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Global Change Biol 6(3):317–327. doi:10.1046/j.1365-2486.2000.00308.x

    Article  Google Scholar 

  • Prairie YT, Duarte CM (2007) Direct and indirect metabolic CO2 release by humanity. Biogeosciences 4(2):215–217

    Article  CAS  Google Scholar 

  • Prather MJ, Holmes CD, Hsu J (2012) Reactive greenhouse gas scenarios: systematic exploration of uncertainties and the role of atmospheric chemistry. Geophys Res Lett 39(9)

    Google Scholar 

  • Prentice IC, Farquhar GD, Fasham MJR, M.L. Goulden, Heimann M, Jaramillo VJ, Kheshgi HS, Quéré CL, Scholes RJ, Wallace DWR (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT, Ding Y, Griggs DJ et al (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom, New York, USA, pp 183–237

    Google Scholar 

  • Quinton JN, Govers G, Van Oost K, Bardgett RD (2010) The impact of agricultural soil erosion on biogeochemical cycling. Nat Geosci 3(5):311–314. doi:10.1038/ngeo838

    Article  CAS  Google Scholar 

  • Rafelski LE, Piper SC, Keeling RF (2009) Climate effects on atmospheric carbon dioxide over the last century. Tellus B 61(5):718–731. doi:10.1111/j.1600-0889.2009.00439.x

    Article  CAS  Google Scholar 

  • Ramankutty N, Foley JA (1999) Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob Biogeochem Cycles 13(4):997–1027. doi:10.1029/1999gb900046

    Article  CAS  Google Scholar 

  • Raupach MR, Canadell JG (2010) Carbon and the anthropocene. Curr Opin Environ Sust 2(4):210–218. doi:10.1016/j.cosust.2010.04.003

    Article  Google Scholar 

  • Raupach MR, Marland G, Ciais P, Le Quere C, Canadell JG, Klepper G, Field CB (2007) Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci USA 104(24):10288–10293. doi:10.1073/pnas.0700609104

    Article  CAS  Google Scholar 

  • Raymond PA, McClelland JW, Holmes RM, Zhulidov AV, Mull K, Peterson BJ, Striegl RG, Aiken GR, Gurtovaya TY (2007) Flux and age of dissolved organic carbon exported to the Arctic Ocean: a carbon isotopic study of the five largest arctic rivers. Glob Biogeochem Cycles 21(4). doi:10.1029/2007gb002934

  • Raymond PA, Oh N-H, Turner RE, Broussard W (2008) Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature 451(7177):449–452. doi:10.1038/nature06505

    Article  CAS  Google Scholar 

  • Redman CL (1999) Human impact on ancient environments Tucson. University of Arizona Press, AZ

    Google Scholar 

  • Regalado A (2010) Biodiversity: Brazil saysrate of deforestation in Amazon continues to plunge. Science 329(5997):1270–1271. doi:10.1126/science.329.5997.1270-b

    Article  CAS  Google Scholar 

  • Regnier P, Friedlingstein P, Ciais P, Mackenzie FT, Gruber N, Janssens IA, Laruelle GG, Lauerwald R, Luyssaert S, Andersson AJ, Arndt S, Arnosti C, Borges AV, Dale AW, Gallego-Sala A, Godderis Y, Goossens N, Hartmann J, Heinze C, Ilyina T, Joos F, LaRowe DE, Leifeld J, Meysman FJR, Munhoven G, Raymond PA, Spahni R, Suntharalingam P, Thullner M (2013) Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci 6(8):597–607. doi:10.1038/ngeo1830

    Article  CAS  Google Scholar 

  • Revelle R, Suess HE (1957) Carbon dioxide exchange between atmosphers and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9(1):18–27

    Article  CAS  Google Scholar 

  • Rhein M, Rintoul SR, Aoki S, Campos E, Chambers D, Feely RA, Gulev S, Johnson GC, Josey SA, Kostianoy A, Mauritzen C, Roemmich D, Talley LD, Wang F (2013) Observations: ocean. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental change. Cambridge University Press, Cambridge, UK, New York, USA, pp 255–315

    Google Scholar 

  • Ridgwell A, Schmidt DN (2010) Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nat Geosci 3(3):196–200. doi:10.1038/ngeo755

    Article  CAS  Google Scholar 

  • Roedenbeck C, Bakker DCE, Metzl N, Olsen A, Sabine C, Cassar N, Reum F, Keeling RF, Heimann M (2014) Interannual sea-air CO2 flux variability from an observation-driven ocean mixed-layer scheme. Biogeosciences 11(17):4599–4613. doi:10.5194/bg-11-4599-2014

    Article  CAS  Google Scholar 

  • Rohling EJ, Sluijs A, Dijkstra HA, Koehler P, de Wal RSWv, von der Heydt AS, Beerling DJ, Berger A, Bijl PK, Crucifix M, DeConto R, Drijfhout SS, Fedorov A, Foster GL, Ganopolski A, Hansen J, Hoenisch B, Hooghiemstra H, Huber M, Huybers P, Knutti R, Lea DW, Lourens LJ, Lunt D, Masson-Demotte V, Medina-Elizalde M, Otto-Bliesner B, Pagani M, Paelike H, Renssen H, Royer DL, Siddall M, Valdes P, Zachos JC, Zeebe RE, Members PP (2012) Making sense of palaeoclimate sensitivity. Nature 491(7426):683–691. doi:10.1038/nature11574

  • Rosenqvist A, Shimada M, Ito N, Watanabe M (2007) ALOS PALSAR: a pathfinder mission for global-scale monitoring of the environment. IEEE Trans Geosci Remote Sens 45(11):3307–3316. doi:10.1109/tgrs.2007.901027

    Article  Google Scholar 

  • Rost S, Gerten D, Heyder U (2008) Human alterations of the terrestrial water cycle through land management. Adv Geosci 18:43–50. doi:10.5194/adgeo-18-43-2008

    Article  Google Scholar 

  • Rotty RM (1983) Distribution of and changes in industrial carbon dioxide production. J Geophys Res- Oc Atm 88(NC2):1301–1308. doi:10.1029/JC088iC02p01301

    Article  CAS  Google Scholar 

  • Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Clim Change 61(3):261–293. doi:10.1023/B:CLIM.0000004577.17928.fa

    Article  CAS  Google Scholar 

  • Ruddiman WF (2005) Plows, plagues, and petroleum: how humans took control of climate. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Ruddiman WF (2013) The anthropocene. Annu Rev Earth Pl Sci 41:45–68. doi:10.1146/annurev-earth-050212-123944

    Article  CAS  Google Scholar 

  • Ruimy A, Saugier B, Dedieu G (1994) Methodology for the estimation of terrestrial net primary production from remotely sensed data. J Geophys Res-Atmos 99(D3):5263–5283. doi:10.1029/93jd03221

    Article  Google Scholar 

  • Running SW (2012) A measurable planetary boundary for the biosphere. Science 337 (6101): 1458–1459. doi:10.1126/science.1227620

  • Sabine CL, Tanhua T (2010) Estimation of anthropogenic CO2 inventories in the ocean. Annu Rev Marine Sci 2:175–198. doi:10.1146/annurev-marine-120308-080947

    Article  Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng TH, Kozyr A, Ono T, Rios AF (2004a) The oceanic sink for anthropogenic CO2. Science 305(5682):367–371. doi:10.1126/science.1097403

    Article  CAS  Google Scholar 

  • Sabine CL, Feely RA, Watanabe YW, Lamb M (2004b) Temporal evolution of the North Pacific CO2 uptake rate. J Oceanogr 60(1):5–15. doi:10.1023/B:JOCE.0000038315.23875.ae

    Article  CAS  Google Scholar 

  • Sabine CL, Heimann M, Artaxo P, Bakker DC, Chen C-TA, Field CB, Gruber N, Le Quéré C, Prinn RG, Richey JE (2004c) Current status and past trends of the global carbon cycle. In: Field CB, Raupach MR (eds) Global carbon cycle: integrating humans, climate, and the natural world. SCOPE 62. Island Press, Washington, pp 17–44

    Google Scholar 

  • Sarmiento JL (1993) Ocean carbon cycle. Chem Eng News 71(22):30–43. doi:10.1021/cen-v071n022.p030

    Article  CAS  Google Scholar 

  • Sarmiento JL, Gruber N (2002) Sinks for anthropogenic carbon. Phys Today 55(8):30–36. doi:10.1063/1.1510279

    Article  CAS  Google Scholar 

  • Sarmiento JL, Sundquist ET (1992) Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature 356(6370):589–593. doi:10.1038/356589a0

    Article  CAS  Google Scholar 

  • Sarmiento JL, Orr JC, Siegenthaler U (1992) A pertubation simulation of CO2 uptake in an ocean general circulation model. J Geophys Res-Oceans 97(C3):3621–3645. doi:10.1029/91jc02849

    Article  CAS  Google Scholar 

  • Sarmiento JL, Hughes TMC, Stouffer RJ, Manabe S (1998) Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393(6682):245–249. doi:10.1038/30455

    Article  CAS  Google Scholar 

  • Sarmiento JL, Gloor M, Gruber N, Beaulieu C, Jacobson AR, Fletcher SEM, Pacala S, Rodgers K (2010) Trends and regional distributions of land and ocean carbon sinks. Biogeosciences 7(8):2351–2367. doi:10.5194/bg-7-2351-2010

    Article  CAS  Google Scholar 

  • Saugier B, Roy J, Mooney HA (2001) Estimations of global terrestrial productivity: converging toward a single number? In: Roy J, Saugier B, Mooney HA (eds) Terrestrial global productivity. Academic Press, San Diego, pp 543–557. doi:http://dx.doi.org/10.1016/B978-012505290-0/50024-7

  • Schimel DS (1995) Terrestrial ecosystems and the carbon cycle. Global Change Biol 1(1):77–91. doi:10.1111/j.1365-2486.1995.tb00008.x

    Article  Google Scholar 

  • Schimel D, Stephens BB, Fisher JB (2015) Effect of increasing CO2 on the terrestrial carbon cycle. Proc Natl Acad Sci USA 112(2):436–441. doi:10.1073/pnas.1407302112/-/DCSupplemental

    Article  CAS  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change, 2nd edn. Academic Press, New York, USA

    Google Scholar 

  • Schlesinger WH, Lichter J (2001) Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411(6836):466–469. doi:10.1038/35078060

    Article  CAS  Google Scholar 

  • Schrope M (2009) When money grows on trees. 0909:101–103

    Google Scholar 

  • Schuster U, Watson AJ, Bates NR, Corbiere A, Gonzalez-Davila M, Metzl N, Pierrot D, Santana-Casiano M (2009) Trends in North Atlantic sea-surface fCO2 from 1990 to 2006. Deep-sea Res Pt II 56(8–10):620–629. doi:10.1016/j.dsr2.2008.12.011

    Article  CAS  Google Scholar 

  • Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H, Mazhitova G, Nelson FE, Rinke A, Romanovsky VE, Shiklomanov N, Tarnocai C, Venevsky S, Vogel JG, Zimov SA (2008) Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58(8):701–714. doi:10.1641/b580807

    Article  Google Scholar 

  • Shevliakova E, Pacala SW, Malyshev S, Hurtt GC, Milly PCD, Caspersen JP, Sentman LT, Fisk JP, Wirth C, Crevoisier C (2009) Carbon cycling under 300 years of land use change: importance of the secondary vegetation sink. Glob Biogeochem Cycles 23. doi:10.1029/2007gb003176

  • Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M, Piao SL, Betts R, Ciais P, Cox P, Friedlingstein P, Jones CD, Prentice IC, Woodward FI (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Global Change Biol 14(9):2015–2039. doi:10.1111/j.1365-2486.2008.01626.x

    Article  Google Scholar 

  • Sitch S, Friedlingstein P, Gruber N, Jones SD, Murray-Tortarolo G, Ahlstrom A, Doney SC, Graven H, Heinze C, Huntingford C, Levis S, Levy PE, Lomas M, Poulter B, Viovy N, Zaehle S, Zeng N, Arneth A, Bonan G, Bopp L, Canadell JG, Chevallier F, Ciais P, Ellis R, Gloor M, Peylin P, Piao SL, Le Quere C, Smith B, Zhu Z, Myneni R (2015) Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12(3):653–679. doi:10.5194/bg-12-653-2015

    Article  CAS  Google Scholar 

  • Smith P, Bustamante M, Ahammad H, Clark H, Dong H, Elsiddig EA, Haberl H, Harper R, House J, Jafari M, Masera O, Mbow C, Ravindranath NH, Rice CW, Abad CR, Romanovskaya A, Sperling F, Tubiello F (2014) Agriculture, Forestry and Other Land Use (AFOLU). In: Edenhofer O, R., Pichs-Madruga, Sokona Y et al. (eds) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press, pp 811–922

    Google Scholar 

  • Smith SJ, Rothwell A (2013) Carbon density and anthropogenic land-use influences on net land-use change emissions. Biogeosciences 10(10):6323–6337. doi:10.5194/bg-10-6323-2013

    Article  CAS  Google Scholar 

  • Stallard RF (1998) Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Glob Biogeochem Cycles 12(2):231–257. doi:10.1029/98gb00741

    Article  CAS  Google Scholar 

  • Steffen W, Crutzen PJ, McNeill JR (2007) The anthropocene: are humans now overwhelming the great forces of nature. Ambio 36(8):614–621

    Article  CAS  Google Scholar 

  • Steffen W, Grinevald J, Crutzen P, McNeill J (2011) The anthropocene: conceptual and historical perspectives. Philos Trans R Soc London, Ser A 369(1938):842–867. doi:10.1098/rsta.2010.0327

    Article  Google Scholar 

  • Stephens BB, Keeling RF, Heimann M, Six KD, Murnane R, Caldeira K (1998) Testing global ocean carbon cycle models using measurements of atmospheric O2 and CO2 concentration. Glob Biogeochem Cycles 12(2):213–230. doi:10.1029/97gb03500

    Article  CAS  Google Scholar 

  • Stephens BB, Gurney KR, Tans PP, Sweeney C, Peters W, Bruhwiler L, Ciais P, Ramonet M, Bousquet P, Nakazawa T, Aoki S, Machida T, Inoue G, Vinnichenko N, Lloyd J, Jordan A, Heimann M, Shibistova O, Langenfelds RL, Steele LP, Francey RJ, Denning AS (2007) Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316(5832):1732–1735. doi:10.1126/science.1137004

    Article  CAS  Google Scholar 

  • Stern N, Peters S, et al (2006) Stern review: the economics of climate change HM Treasury. London, UK

    Google Scholar 

  • Strassmann KM, Joos F, Fischer G (2008) Simulating effects of land use changes on carbon fluxes: past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity. Tellus B 60(4):583–603. doi:10.1111/j.1600-0889.2008.00340.x

    Article  CAS  Google Scholar 

  • Stuiver M, Quay PD, Ostlund HG (1983) Abyssal water carbon-14 distribution and the age of the world oceans. Science 219(4586):849–851. doi:10.1126/science.219.4586.849

    Article  CAS  Google Scholar 

  • Suchet PA, Probst JL (1995) A global model for present-day atmospheric soil CO2 consumption by chemical erosion of continental rocks (GEM-CO2). Tellus B 47(1–2):273–280. doi:10.1034/j.1600-0889.47.issue1.23.x

    Article  Google Scholar 

  • Sundquist ET (1986) Geologic analogs: their value and limitations in carbon dioxide research. In: Trabulka JR, Reichle DE (eds) The changing carbon cycle: a global analysis. Springer, New York, USA, pp 371–402

    Google Scholar 

  • Sundquist ET, Ackerman KV, Parker L, Huntzinger DN (2009) An introduction to global carbon cycle management. In: McPherson BJ, Sundquist ET (eds) Carbon Sequestration and its role in the global carbon cycle. Elsevier, Oxford, pp 1–23

    Chapter  Google Scholar 

  • Takahashi T, Olafsson J, Goddard JG, Chipman DW, Sutherland SC (1993) Seasonal variation of CO2 and nutrients in the high-latitude surface oceans—a comparative study. Glob Biogeochem Cycles 7(4):843–878. doi:10.1029/93GB02263

    Article  CAS  Google Scholar 

  • Takahashi T, Sutherland SC, Feely RA, Wanninkhof R (2006) Decadal change of the surface water pCO2 in the North Pacific: a synthesis of 35 years of observations. J Geophys Res-Oceans 111:C07s05. doi:10.1029/2005jc003074

  • Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Sabine C, Watson A, Bakker DCE, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Koertzinger A, Steinhoff T, Hoppema M, Olafsson J, Arnarson TS, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Wong CS, Delille B, Bates NR, de Baar HJW (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans (vol 56, pg 554, 2009). Deep-Sea Res Pt I 56(11):2075–2076. doi:10.1016/j.dsr.2009.07.007

  • Tans PP, Fung IY, Takahashi T (1990) Observational constraints on geological atmospheric CO2 budget. Science 247(4949):1431–1438. doi:10.1126/science.247.4949.1431

    Article  CAS  Google Scholar 

  • Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer GA (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54(6):2298–2314. doi:10.4319/lo.2009.54.6_part_2.2298

    Article  CAS  Google Scholar 

  • Trudinger CM, Enting IG, Rayner PJ, Francey RJ (2002) Kalman filter analysis of ice core data: 2. Double deconvolution of CO2 and δ13C measurements. J Geophys Res 107:D20. doi:10.1029/2001jd001112 4423

    Google Scholar 

  • Trudinger C, Enting I, Etheridge D, Francey R, Rayner P (2005) The carbon cycle over the past 1000 years inferred from the inversion of ce core data. In: Ehleringer JR, Cerling TE, Dearing MD (eds) A history of atmospheric CO2 and its effects on plants, animals, and ecosystems, vol ecological studies, vol 177., SpringerNew York, USA, pp 239–349

    Google Scholar 

  • Turner WR, Oppenheimer M, Wilcove DS (2009) A force to fight global warming. Nature 462(7271):278–279. doi:10.1038/462278a

    Article  CAS  Google Scholar 

  • van der Werf GR, Morton DC, DeFries RS, Olivier JGJ, Kasibhatla PS, Jackson RB, Collatz GJ, Randerson JT (2009) CO2 emissions from forest loss. Nat Geosci 2(11):737–738. doi:10.1038/ngeo671

    Article  CAS  Google Scholar 

  • van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, Morton DC, DeFries RS, Jin Y, van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmos Chem Phys 10(23):11707–11735. doi:10.5194/acp-10-11707-2010

    Article  CAS  Google Scholar 

  • van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fule PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH, Veblen TT (2009) Widespread increase of tree mortality rates in the Western United States. Science 323(5913):521–524. doi:10.1126/science.1165000

    Article  CAS  Google Scholar 

  • Van Minnen JG, Goldewijk KK, Stehfest E, Eickhout B, van Drecht G, Leemans R (2009) The importance of three centuries of land-use change for the global and regional terrestrial carbon cycle. Clim Change 97(1–2):123–144. doi:10.1007/s10584-009-9596-0

    Article  CAS  Google Scholar 

  • Ver LMB, Mackenzie FT, Lerman A (1999) Biogeochemical responses of the carbon cycle to natural and human perturbations: past, present, and future. Am J Sci 299(7–9):762–801. doi:10.2475/ajs.299.7-9.762

    Article  CAS  Google Scholar 

  • Vitousek PM (1997) Human domination of Earth’s ecosystems (vol 277, p 494, 1997). Science 278(5335):21

    CAS  Google Scholar 

  • Wanninkhof R, Asher WE, Ho DT, Sweeney C, McGillis WR (2009) Advances in quantifying air-sea gas exchange and environmental forcing. Annu Rev Marine Sci 1:213–244. doi:10.1146/annurev.marine.010908.163742

    Article  Google Scholar 

  • Wanninkhof R, Park GH, Takahashi T, Sweeney C, Feely R, Nojiri Y, Gruber N, Doney SC, McKinley GA, Lenton A, Le Quéré C, Heinze C, Schwinger J, Graven H, Khatiwala S (2013) Global ocean carbon uptake: magnitude, variability and trends. Biogeosciences 10(3):1983–2000. doi:10.5194/bg-10-1983-2013

    Article  CAS  Google Scholar 

  • Waring RH, Landsberg JJ, Williams M (1998) Net primary production of forests: a constant fraction of gross primary production? Tree Physiol 18(2):129–134

    Article  Google Scholar 

  • WMO (2016) World Meteorological Organization (WMO) greenhouse gas bulletin: the state of greenhouse gases in the atmosphere based on global observation through 2015. Bulletin No. 12. World Meteorological Organization (WMO), Global Atmosphere Watch (GAW), Geneva, Switzerland, 8 p

    Google Scholar 

  • Wolff EW (2011) Greenhouse gases in the earth system: a palaeoclimate perspective. Philos Trans R Soc Series A 369(1943):2133–2147. doi:10.1098/rsta.2010.0225

    Article  CAS  Google Scholar 

  • Yoshikawa C, Kawamiya M, Kato T, Yamanaka Y, Matsuno T (2008) Geographical distribution of the feedback between future climate change and the carbon cycle. J Geophys Res-Biogeo 113(G3). doi:10.1029/2007jg000570

  • Zaehle S, Dalmonech D (2011) Carbon-nitrogen interactions on land at global scales: current understanding in modelling climate biosphere feedbacks. Curr Opin Environ Sust 3(5):311–320. doi:10.1016/j.cosust.2011.08.008

    Article  Google Scholar 

  • Zak DR, Pregitzer KS, Kubiske ME, Burton AJ (2011) Forest productivity under elevated CO2 and O3: positive feedbacks to soil N cycling sustain decade-long net primary productivity enhancement by CO2. Ecol Lett 14(12):1220–1226. doi:10.1111/j.1461-0248.2011.01692.x

    Article  Google Scholar 

  • Zalasiewicz J, Williams M, Haywood A, Ellis M (2011) The anthropocene: a new epoch of geological time? Introduction. Philos Trans R Soc Series A 369(1938):835–841. doi:10.1098/rsta.2010.0339

    Article  Google Scholar 

  • Zohary D, Hopf M (1993) Domestication of plants in old world. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A.N. Ussiri .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ussiri, D.A., Lal, R. (2017). The Modern Carbon Cycle. In: Carbon Sequestration for Climate Change Mitigation and Adaptation. Springer, Cham. https://doi.org/10.1007/978-3-319-53845-7_6

Download citation

Publish with us

Policies and ethics