Introduction to Global Carbon Cycling: An Overview of the Global Carbon Cycle



Carbon (C) is the essential attribute of life. Therefore, its cycling gives the overall index of health of the biosphere. Global C cycling involves the exchange of C between its four main reservoirs—the atmosphere, terrestrial biosphere, oceans and sediments. Understanding the biogeochemical processes regulating the movement of C from one reservoir to another is central to control carbon dioxide (CO2) and methane (CH4) emissions and mitigating climate change. This introductory chapter presents an overview of the global C cycle. The atmospheric carbon burden—both CO2 and CH4 concentrations, has increased significantly since the beginning of the Industrial Revolution in response to anthropogenic perturbations of the global C cycle. The major sources of the increase in atmospheric C content are the utilization of fossil fuels for energy, cement production, land use conversion and deforestation. Fossil fuel and cement production released 410 ± 20 Pg C between 1750 and 2015. Similarly, land use change released 190 ± 65 Pg C over the same period. The atmospheric C burden increased by 260 ± 5 Pg between 1750 and 2015. The consequences of changes in global C cycling extend beyond the global warming associated changes in radiation balance caused by increased concentration of trace gases. It causes changes in atmospheric photochemistry, disturbances in terrestrial ecosystems as well as marine chemistry and ecosystems. In the following chapters these effects will be discussed in much more details.


Biosphere Carbon reservoirs Methane Lithosphere Carbon fluxes Fossil fuels 


  1. Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, Meinshausen M, Meinshausen N (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458(7242):1163–1166CrossRefGoogle Scholar
  2. Alroy J (2008) Dynamics of origination and extinction in the marine fossil record. Proc Natl Acad Sci USA 105:11536–11542. doi: 10.1073/pnas.0802597105 CrossRefGoogle Scholar
  3. Archer D (2010) Palaeoclimate: How it went down last time. Nat Geosci 3: 819.Google Scholar
  4. Archer D, Eby M, Brovkin V, Ridgwell A, Cao L, Mikolajewicz U, Caldeira K, Matsumoto K, Munhoven G, Montenegro A, Tokos K (2009) Atmospheric lifetime of fossil fuel carbon dioxide. Annu Rev Earth Planet Sci 37:117–134. doi: 10.1146/ CrossRefGoogle Scholar
  5. Bastos A, Running SW, Gouveia C, Trigo RM (2013) The global NPP dependence on ENSO: La Nina and the extraordinary year of 2011. J Geophys Res Biogeosci 118(3):1247–1255. doi: 10.1002/jgrg.20100 CrossRefGoogle Scholar
  6. Beman JM, Chow C-E, King AL, Feng Y, Fuhrman JA, Andersson A, Bates NR, Popp BN, Hutchins DA (2011) Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proc Natl Acad Sci USA 108(1):208–213. doi: 10.1073/pnas.1011053108 CrossRefGoogle Scholar
  7. Berner RA (1998) The carbon cycle and CO2 over Phanerozoic time: the role of land plants. Philos Trans R Soc Lond Ser A 353(1365):75–81. doi: 10.1098/rstb.1998.0192 CrossRefGoogle Scholar
  8. Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425(6956):365. doi: 10.1038/425365a CrossRefGoogle Scholar
  9. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimmann M, Jones C, Quere CL, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stockler TF, Qin D, Plattner G-K et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, UK, and New York, USA, pp 465–570Google Scholar
  10. Ciais P, Dolman AJ, Bombelli A, Duren R, Peregon A, Rayner PJ, Miller C, Gobron N, Kinderman G, Marland G, Gruber N, Chevallier F, Andres RJ, Balsamo G, Bopp L, Breon FM, Broquet G, Dargaville R, Battin TJ, Borges A, Bovensmann H, Buchwitz M, Butler J, Canadell JG, Cook RB, DeFries R, Engelen R, Gurney KR, Heinze C, Heimann M, Held A, Henry M, Law B, Luyssaert S, Miller J, Moriyama T, Moulin C, Myneni RB, Nussli C, Obersteiner M, Ojima D, Pan Y, Paris JD, Piao SL, Poulter B, Plummer S, Quegan S, Raymond P, Reichstein M, Rivier L, Sabine C, Schimel D, Tarasova O, Valentini R, Wang R, van der Werf G, Wickland D, Williams M, Zehner C (2014) Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system. Biogeosciences 11(13):3547–3602. doi: 10.5194/bg-11-3547-2014 CrossRefGoogle Scholar
  11. De Kauwe MG, Medlyn BE, Zaehle S, Walker AP, Dietze MC, Hickler T, Jain AK, Luo Y, Parton WJ, Prentice IC, Smith B, Thornton PE, Wang S, Wang Y-P, Warlind D, Weng E, Crous KY, Ellsworth DS, Hanson PJ, Seok Kim H, Warren JM, Oren R, Norby RJ (2013) Forest water use and water use efficiency at elevated CO2: a model-data intercomparison at two contrasting temperate forest FACE sites. Glob Change Biol 19(6):1759–1779. doi: 10.1111/gcb.12164 CrossRefGoogle Scholar
  12. Des Marais DJ (2001) Isotopic evolution of the biogeochemical carbon cycle during the Precambrian. In: Valley JW, Cole DR (eds) Stable isotope geochemistry, vol 43. Reviews in mineralogy and geochemistry, pp 555–578. doi: 10.2138/gsrmg.43.1.555
  13. Doughty CE (2013) Preindustrial human impacts on global and regional environment. Annu Rev Environ Resour 38:503–527. doi: 10.1146/annurev-environ-032012-095147 CrossRefGoogle Scholar
  14. Ellis EC, Ramankutty N (2008) Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ 6(8):439–447. doi: 10.1890/070062 CrossRefGoogle Scholar
  15. Etheridge D, Steele L, Langenfelds R, Francey R, Barnola JM, Morgan V (1996) Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J Geophys Res Atmos 101(D2):4115–4128CrossRefGoogle Scholar
  16. Field CB, Sarmiento J, Hales B (2007) The carbon cycle of North America in a global context. In: King AW, Dilling L, Zimmerman GP et al (eds) The first state of the carbon cycle report (SOCCR): the North American carbon budget and implications for the global carbon cycle: a report by the US climate change science program and the subcommittee on global change research. National Oceanic and Atmospheric Administration, National Climatic Data Center, Washington, DC, pp 21–28Google Scholar
  17. Friedlingstein P, Cox P, Betts R, Bopp L, Von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19(14):3337–3353. doi: 10.1175/jcli3800.1 CrossRefGoogle Scholar
  18. Friedlingstein P, Andrew RM, Rogelj J, Peters GP, Canadell JG, Knutti R, Luderer G, Raupach MR, Schaeffer M, van Vuuren DP, Le Quere C (2014) Persistent growth of CO2 emissions and implications for reaching climate targets. Nat Geosci 7(10):709–715. doi: 10.1038/ngeo2248 CrossRefGoogle Scholar
  19. Gregory JM, Dixon KW, Stouffer RJ, Weaver AJ, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov AP, Thorpe RB (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32(12). doi: 10.1029/2005gl023209
  20. Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc Natl Acad Sci USA 104(31):12942–12945. doi: 10.1073/pnas.0704243104 CrossRefGoogle Scholar
  21. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318(5857):1737–1742. doi: 10.1126/science.1152509 CrossRefGoogle Scholar
  22. Houghton RA (2014) The contemporary carbon cycle. In: Turekian KK, Holland HD (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 399–435. doi:
  23. Houghton RA, House J, Pongratz J, Van der Werf G, DeFries R, Hansen M, Quéré CL, Ramankutty N (2012) Carbon emissions from land use and land-cover change. Biogeosciences 9(12):5125–5142CrossRefGoogle Scholar
  24. Hutchins DA, Mulholland MR, Fu F (2009) Nutrient cycles and marine microbes in a CO2-enriched ocean. Oceanography 22(4):128–145CrossRefGoogle Scholar
  25. IPCC (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. Intergovernmental Panel on Climate Change, Geneva, Switzerland, 104 ppGoogle Scholar
  26. IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Intergovernmental Panel on Climate Change, Geneva, SwitzerlandGoogle Scholar
  27. Johnson A, White ND (2014) Ocean acidification: the other climate change issue. Am Sci 102(1):60–63CrossRefGoogle Scholar
  28. Jones PD, Parker DE, Osborn TJ, Briffa KR (2013) Global and hemispheric temperature anomalies—land and marine instrumental records. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy. Accessed 13 Mar 2015
  29. Joos F, Spahni R (2008) Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc Natl Acad Sci USA 105(5):1425–1430. doi: 10.1073/pnas.0707386105 CrossRefGoogle Scholar
  30. Keeling CD (1958) The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim Cosmochim Acta 13(4):322–334. doi: 10.1016/0016-7037(58)90033-4 CrossRefGoogle Scholar
  31. Kharecha PA, Hansen JE (2008) Implications of “peak oil” for atmospheric CO2 and climate. Glob Biogeochem Cycles 22(3). doi: 10.1029/2007gb003142
  32. Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Conway TJ, Doney SC, Feely RA, Foster P, Friedlingstein P, Gurney K, Houghton RA, House JI, Huntingford C, Levy PE, Lomas MR, Majkut J, Metzl N, Ometto JP, Peters GP, Prentice IC, Randerson JT, Running SW, Sarmiento JL, Schuster U, Sitch S, Takahashi T, Viovy N, van der Werf GR, Woodward FI (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2(12):831–836. doi: 10.1038/ngeo689 CrossRefGoogle Scholar
  33. Le Quéré C, Moriarty R, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Friedlingstein P, Peters GP, Andres RJ, Boden TA, Houghton RA, House JI, Keeling RF, Tans P, Arneth A, Bakker DCE, Barbero L, Bopp L, Chang J, Chevallier F, Chini LP, Ciais P, Fader M, Feely RA, Gkritzalis T, Harris I, Hauck J, Ilyina T, Jain AK, Kato E, Kitidis V, Goldewijk KK, Koven C, Landschuetzer P, Lauvset SK, Lefevre N, Lenton A, Lima ID, Metzl N, Millero F, Munro DR, Murata A, Nabel JEMS, Nakaoka S, Nojiri Y, O’Brien K, Olsen A, Ono T, Perez FF, Pfeil B, Pierrot D, Poulter B, Rehder G, Roedenbeck C, Saito S, Schuster U, Schwinger J, Seferian R, Steinhoff T, Stocker BD, Sutton AJ, Takahashi T, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, van Heuven S, Vandemark D, Viovy N, Wiltshire A, Zaehle S, Zeng N (2015) Global carbon budget 2015. Earth Syst Sci Data 7(2):349–396. doi: 10.5194/essd-7-349-2015 CrossRefGoogle Scholar
  34. Le Quéré C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA, Keeling RF, Alin S, Andrews OD, Anthoni P, Barbero L, Bopp L, Chevallier F, Chini LP, Ciais P, Currie K, Delire C, Doney SC, Friedlingstein P, Gkritzalis T, Harris I, Hauck J, Haverd V, Hoppema M, Klein Goldewijk K, Jain AK, Kato E, Körtzinger A, Landschützer P, Lefèvre N, Lenton A, Lienert S, Lombardozzi D, Melton JR, Metzl N, Millero F, Monteiro PMS, Munro DR, Nabel JEMS, Nakaoka SI, O’Brien K, Olsen A, Omar AM, Ono T, Pierrot D, Poulter B, Rödenbeck C, Salisbury J, Schuster U, Schwinger J, Séférian R, Skjelvan I, Stocker BD, Sutton AJ, Takahashi T, Tian H, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Zaehle S (2016) Global carbon budget 2016. Earth Syst Sci Data 8(2):605–649. doi: 10.5194/essd-8-605-2016 CrossRefGoogle Scholar
  35. Lüthi D, Le Floch M, Bereiter B, Blunier T, Barnola J-M, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453(7193):379–382. doi: 10.1038/nature06949 CrossRefGoogle Scholar
  36. Mackey B, Prentice IC, Steffen W, House JI, Lindenmayer D, Keith H, Berry S (2013) Untangling the confusion around land carbon science and climate change mitigation policy. Nat Clim Change 3(6):552–557. doi: 10.1038/nclimate1804 CrossRefGoogle Scholar
  37. Millero FJ, Woosley R, Ditrolio B, Waters J (2009) Effect of ocean acidification on the speciation of metals in seawater. Oceanography 22(4):72–85CrossRefGoogle Scholar
  38. Newingham BA, Vanier CH, Charlet TN, Ogle K, Smith SD, Nowak RS (2013) No cumulative effect of 10 years of elevated CO2 on perennial plant biomass components in the Mojave desert. Glob Change Biol 19(7):2168–2181. doi: 10.1111/gcb.12177 CrossRefGoogle Scholar
  39. NOAA (2015) The NOAA annual greenhouse gas index (AGGI). Earth System Research Laboratory, National Oceanic and Atmospheric Administration, US Department of Commerce. Accessed 15 Mar 2015
  40. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399(6735):429–436. doi: 10.1038/20859 CrossRefGoogle Scholar
  41. Prinn RG (2004) Non-CO2 greenhouse gases. In: Field CB, Raupach MR (eds) The global carbon cycle: integrating humans, climate, and the natural world. Scope 62. Island Press, Washington, DC, pp 205–216Google Scholar
  42. Raupach MR, Canadell JG (2010) Carbon and the anthropocene. Curr Opin Environ Sust 2(4):210–218. doi: 10.1016/j.cosust.2010.04.003 CrossRefGoogle Scholar
  43. Raupach MR, Davis SJ, Peters GP, Andrew RM, Canadell JG, Ciais P, Friedlingstein P, Jotzo F, van Vuuren DP, Le Quere C (2014) Sharing a quota on cumulative carbon emissions. Nat Clim Change 4(10):873–879. doi: 10.1038/nclimate2384 CrossRefGoogle Scholar
  44. Raymond PA, Cole JJ (2003) Increase in the export of alkalinity from North America’s largest river. Science 301(5629):88–91. doi: 10.1126/science.1083788 CrossRefGoogle Scholar
  45. Revelle R, Suess HE (1957) Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9(1):18–27CrossRefGoogle Scholar
  46. Ruedy R, Sato M, Lo K (2015) NASA GISS surface temperature (GISTEMP) analysis. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy. Accessed 13 Mar 2015
  47. Scripps (2014) The keeling curve. Scripps Institution of Oceanography. Accessed 13 Jan 2015
  48. Steffen W, Crutzen PJ, McNeill JR (2007) The anthropocene: are humans now overwhelming the great forces of nature. Ambio 36(8):614–621CrossRefGoogle Scholar
  49. Sundquist ET (1986) Geologic analogs: their value and limitations in carbon dioxide research. In: Trabulka JR, Reichle DE (eds) The changing carbon cycle: a global analysis. Springer, New York, USA, pp 371–402Google Scholar
  50. Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Res Part II 49(9–10):1601–1622. doi: 10.1016/s0967-0645(02)00003-6 CrossRefGoogle Scholar
  51. Tans P, Keeling R (2014) Trends in carbon dioxide. Accessed 14 Oct 2014
  52. Tyrrell T (2011) Anthropogenic modification of the oceans. Philos Trans R Soc Ser A 369(1938):887–908. doi: 10.1098/rsta.2010.0334 CrossRefGoogle Scholar
  53. WMO (2016) World Meteorological Organization (WMO) greenhouse gas bulletin: the state of greenhouse gases in the atmosphere based on global observation through 2015. Bulletin No. 12. World Meteorological Organization (WMO), Global Atmosphere Watch (GAW), Geneva, Switzerland, 8 pGoogle Scholar
  54. Zak DR, Pregitzer KS, Kubiske ME, Burton AJ (2011) Forest productivity under elevated CO2 and O3: positive feedbacks to soil N cycling sustain decade-long net primary productivity enhancement by CO2. Ecol Lett 14(12):1220–1226. doi: 10.1111/j.1461-0248.2011.01692.x CrossRefGoogle Scholar
  55. Zeebe RE, Zachos JC, Caldeira K, Tyrrell T (2008) Oceans—carbon emissions and acidification. Science 321(5885):51–52. doi: 10.1126/science.1159124 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Carbon Management and Sequestration Center, School of Environment and Natural ResourcesThe Ohio State UniversityColumbusUSA

Personalised recommendations