Skip to main content

Greenhouse Gas Mitigation under Agriculture and Livestock Landuse

  • Chapter
  • First Online:
Carbon Sequestration for Climate Change Mitigation and Adaptation

Abstract

Ensuring food security for the growing global population and changing climate are the principal challenges of the modern agriculture. The global population is projected to reach 9.7 billion by 2050. With rising incomes and the increasing proportion of global population living in urban areas, the composition of food demand is changing in fundamental ways. Higher income urban population have more diverse diets that feature a variety of high-value food sources such as livestock that are more resource-intensive to produce and process. This adds to the challenge of preserving the resilience of both natural resources and agricultural ecosystems. Agriculture occupies about 38% of the ice-free Earth’s surface, of which, the cropland is about 12% and grazing land is about 26%. Projections indicate that global food production must increase by 70%, while in many African countries where the challenge is most acute, food production must increase by more than 100% by 2050 to meet the global food demand. The average annual share of agriculture, forest and land use to the total anthropogenic greenhouse gases (GHGs) has been declining over time from 28.7 ± 1.5% in the 1990s and 23.6 ± 2.1% in 2000s, and the annual value of 21.2 ± 1.5% in 2010. In 2010, agriculture contributed 11.2 ± 0.4% of the total anthropogenic GHG emissions compared to 10.0 ± 1.2% of the land use sector. Moreover, agriculture and land use changes associated with it are among the principal contributors of climate change. Agriculture also accounts for 84 and 52% of global nitrous oxide (N2O) and methane (CH4) emissions. Nonetheless, agriculture sector also is the most vulnerable to the adverse effects of global warming, such as more variable rainfall and more extreme weather generated events. Agriculture practices can potentially mitigate GHG emissions through improved cropland, animal husbandry, and grazing land management practices as well as restoration of degraded land and cultivated organic soils. Sustainable land management delivers benefits through C conservation in natural forests, grasslands, and wetlands, C sequestration in both agriculture soils and natural biomass, both of which remove C from the atmosphere and store it in biomass and soils within the terrestrial ecosystems. In addition, best management practices of croplands, grazing lands and also livestock and their byproducts such as manure could reduce the emissions of GHGs from agriculture and contribute to climate change mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler PR, Grosso SJD, Parton WJ (2007) Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecol Appl 17(3):675–691

    Article  Google Scholar 

  • Aragao L, Shimabukuro YE (2010) The incidence of fire in Amazonian forests with implications for REDD. Science 328(5983):1275–1278. doi:10.1126/science.1186925

    Article  CAS  Google Scholar 

  • Araya MM, Hofstad O (2016) Monetary incentives to avoid deforestation under the reducing emissions from deforestation and degradation (REDD) plus climate change mitigation scheme in Tanzania. Mitig Adapt Strat Glob Change 21(3):421–443. doi:10.1007/s11027-014-9607-y

    Article  Google Scholar 

  • Balabane M, Plante AF (2004) Aggregation and carbon storage in silty soil using physical fractionation techniques. Eur J Soil Sci 55(2):415–427. doi:10.1111/j.1351-0754.2004.0608.x

    Article  Google Scholar 

  • Baldock JA, Masiello CA, Gelinas Y, Hedges JI (2004) Cycling and composition of organic matter in terrestrial and marine ecosystems. Mar Chem 92(1–4):39–64. doi:10.1016/j.marchem.2004.06.016

    Article  CAS  Google Scholar 

  • Balesdent J (1996) The significance of organic separates to carbon dynamics and its modelling in some cultivated soils. Eur J Soil Sci 47(4):485–493. doi:10.1111/j.1365-2389.1996.tb01848.x

  • Balesdent J, Chenu C, Balabane M (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Till Res 53(3–4):215–230. doi:10.1016/s0167-1987(99)00107-5

    Article  Google Scholar 

  • Barcena TG, Kiaer LP, Vesterdal L, Stefansdottir HM, Gundersen P, Sigurdsson BD (2014) Soil carbon stock change following afforestation in Northern Europe: a meta-analysis. Glob Chang Biol 20(8):2393–2405. doi:10.1111/gcb.12576

    Article  CAS  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47(2):151–163. doi:10.1111/j.1365-2389.1996.tb01386.x

  • Bayer C, Martin-Neto L, Mielniczuk J, Dieckow J, Amado TJC (2006) C and N stocks and the role of molecular recalcitrance and organomineral interaction in stabilizing soil organic matter in a subtropical Acrisol managed under no-tillage. Geoderma 133(3–4):258–268. doi:10.1016/j.geoderma.2005.07.012

    Article  CAS  Google Scholar 

  • Bellarby J, Tirado R, Leip A, Weiss F, Lesschen JP, Smith P (2013) Livestock greenhouse gas emissions and mitigation potential in Europe. Glob Chang Biol 19(1):3–18. doi:10.1111/j.1365-2486.2012.02786.x

    Article  Google Scholar 

  • Bellassen V, Viovy N, Luyssaert S, Le Maire G, Schelhaas MJ, Ciais P (2011) Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000. Glob Chang Biol 17(11):3274–3292. doi:10.1111/j.1365-2486.2011.02476.x

    Article  Google Scholar 

  • Benke MB, Mermut AR, Shariatmadari H (1999) Retention of dissolved organic carbon from vinasse by a tropical soil, kaolinite, and Fe-oxides. Geoderma 91(1–2):47–63. doi:10.1016/s0016-7061(98)00143-8

    Article  CAS  Google Scholar 

  • Bennetzen EH, Smith P, Porter JR (2016) Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Glob Chang Biol 22(2):763–781. doi:10.1111/gcb.13120

    Article  Google Scholar 

  • Biederman LA, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5(2):202–214. doi:10.1111/gcbb.12037

    Article  CAS  Google Scholar 

  • Bird MI, Moyo C, Veenendaal EM, Lloyd J, Frost P (1999) Stability of elemental carbon in a savanna soil. Glob Biogeochem Cy 13(4):923–932. doi:10.1029/1999gb900067

    Article  CAS  Google Scholar 

  • Bolin B, Sukmar R, Ciais P, Cramer W, Jarvis PG, Keshshigi H, Nobre C, Semenov S, Steffen W (2000) Global perspective. In: Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (eds) Land use, land-use change, and forestry. A special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 23–51

    Google Scholar 

  • Bond-Lamberty B, Thomson A (2010a) A global database of soil respiration data. BioGeosciences 7(6):1915–1926. doi:10.5194/bg-7-1915-2010

    Article  CAS  Google Scholar 

  • Bond-Lamberty B, Thomson A (2010b) Temperature-associated increases in the global soil respiration record. Nature 464(7288):579–582. doi:10.1038/nature08930

    Article  CAS  Google Scholar 

  • Brodowski S, Rodionov A, Haumaier L, Glaser B, Amelung W (2005) Revised black carbon assessment using benzene polycarboxylic acids. Org Geochem 36(9):1299–1310. doi:10.1016/j.orggeochem.2005.03.011

    Article  CAS  Google Scholar 

  • Brown EG, Anderson RC, Carstens GE, Gutierrez-Banuelos H, McReynolds JL, Slay LJ, Callaway TR, Nisbet DJ (2011) Effects of oral nitroethane administration on enteric methane emissions and ruminal fermentation in cattle. Anim Feed Sci Technol 166–67:275–281. doi:10.1016/j.anifeedsci.2011.04.017

    Article  CAS  Google Scholar 

  • Burney JA, Davis SJ, Lobell DB (2010) Greenhouse gas mitigation by agricultural intensification. Proc Natl Acad Sci USA 107(26):12052–12057. doi:10.1073/pnas.0914216107

    Article  CAS  Google Scholar 

  • Campbell BM, Thornton P, Zougmoré R, Van Asten P, Lipper L (2014) Sustainable intensification: what is its role in climate smart agriculture? Curr Opin Environ Sust 8:39–43

    Article  Google Scholar 

  • Canadell JG, Schulze ED (2014) Global potential of biospheric carbon management for climate mitigation. Nat Comm 5. doi:10.1038/ncomms6282

  • Capo RC, Chadwick OA (1999) Sources of strontium and calcium in desert soil and calcrete. Earth Planet Sci Lett 170(1–2):61–72. doi:10.1016/s0012-821x(99)00090-4

    Article  CAS  Google Scholar 

  • Carmo-Silva E, Scales JC, Madgwick PJ, Parry MAJ (2015) Optimizing Rubisco and its regulation for greater resource use efficiency. Plant Cell Environ 38(9):1817–1832. doi:10.1111/pce.12425

    Article  CAS  Google Scholar 

  • Cayuela ML, Sanchez-Monedero MA, Roig A, Hanley K, Enders A, Lehmann J (2013) Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Sci Rep 3. doi:10.1038/srep01732

  • Ceschia E, Beziat P, Dejoux JF, Aubinet M, Bernhofer C, Bodson B, Buchmann N, Carrara A, Cellier P, Di Tommasi P, Elbers JA, Eugster W, Grunwald T, Jacobs CMJ, Jans WWP, Jones M, Kutsch W, Lanigan G, Magliulo E, Marloie O, Moors EJ, Moureaux C, Olioso A, Osborne B, Sanz MJ, Saunders M, Smith P, Soegaard H, Wattenbach M (2010) Management effects on net ecosystem carbon and GHG budgets at European crop sites. Agr Environ 139(3):363–383. doi:10.1016/j.agee.2010.09.020

    Article  Google Scholar 

  • Chabbi A, Kogel-Knabner I, Rumpel C (2009) Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile. Soil Biol Biochem 41(2):256–261. doi:10.1016/j.soilbio.2008.10.033

    Article  CAS  Google Scholar 

  • Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H, Gabrielle B, Eng AG, Lucht W, Mapako M, Cerutti OM, McIntyre T, Minowa T, Pingoud K (2011) Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y et al (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, pp 209–331

    Chapter  Google Scholar 

  • Ciais P, Sabine CL, Govindasamy B, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quere C, Myeneni R, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K et al. (eds) Climate change 2013: physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 465–570

    Google Scholar 

  • Clemens J, Ahlgrimm HJ (2001) Greenhouse gases from animal husbandry: mitigation options. Nutr Cycl Agroecosyst 60(1–3):287–300. doi:10.1023/a:1012712532720

    Article  Google Scholar 

  • Clough TJ, Condron LM, Kammann C, Müller C (2013) A review of biochar and soil nitrogen dynamics. Agronomy 3(2):275–293

    Article  CAS  Google Scholar 

  • Cole CV, Duxbury J, Freney J, Heinemeyer O, Minami K, Mosier A, Paustian K, Rosenberg N, Sampson N, Sauerbeck D, Zhao Q (1997) Global estimates of potential mitigation of greenhouse gas emissions by agriculture. Nutr Cycl Agroecosyst 49(1–3):221–228. doi:10.1023/a:1009731711346

    Article  CAS  Google Scholar 

  • Conant RT, Paustian K (2002) Potential soil carbon sequestration in overgrazed grassland ecosystems. Glob Biogeochem Cy 16(4). doi:10.1029/2001gb001661

  • Conant RT, Paustian K, Del Grosso SJ, Parton WJ (2005) Nitrogen pools and fluxes in grassland soils sequestering carbon. Nutr Cycl Agroecosyst 71(3):239–248. doi:10.1007/s10705-004-5085-z

    Article  CAS  Google Scholar 

  • Conant RT, Easter M, Paustian K, Swan A, Williams S (2007) Impacts of periodic tillage on soil C stocks: a synthesis. Soil Till Res 95(1–2):1–10. doi:10.1016/j.still.2006.12.006

    Article  Google Scholar 

  • Craine JM, Fierer N, McLauchlan KK (2010) Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nat Geosci 3(12):854–857. doi:10.1038/ngeo1009

    Article  CAS  Google Scholar 

  • Creutzig F, Ravindranath NH, Berndes G, Bolwig S, Bright R, Cherubini F, Chum H, Corbera E, Delucchi M, Faaij A, Fargione J, Haberl H, Heath G, Lucon O, Plevin R, Popp A, Robledo-Abad C, Rose S, Smith P, Stromman A, Suh S, Masera O (2015) Bioenergy and climate change mitigation: an assessment. GCB Bioenergy 7(5):916–944. doi:10.1111/gcbb.12205

    Article  CAS  Google Scholar 

  • Dalin C, Rodriguez-Iturbe I (2016) Environmental impacts of food trade via resource use and greenhouse gas emissions. Environ Res Lett 11(3). doi:10.1088/1748-9326/11/3/035012

  • Davis SC, Parton WJ, Del Grosso SJ, Keough C, Marx E, Adler PR, DeLucia EH (2012) Impact of second-generation biofuel agriculture on greenhouse-gas emissions in the corn-growing regions of the US. Front Ecol Environ 10(2):69–74

    Article  Google Scholar 

  • Doetterl S, Stevens A, Six J, Merckx R, Van Oost K, Pinto MC, Casanova-Katny A, Munoz C, Boudin M, Venegas EZ, Boeckx P (2015) Soil carbon storage controlled by interactions between geochemistry and climate. Nat Geosci 8(10):780. doi:10.1038/ngeo2516

  • Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Glob Chang Biol 17(4):1658–1670. doi:10.1111/j.1365-2486.2010.02336.x

    Article  Google Scholar 

  • Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol 18(6):1781–1796. doi:10.1111/j.1365-2486.2012.02665.x

    Article  Google Scholar 

  • Ekschmitt K, Liu MQ, Vetter S, Fox O, Wolters V (2005) Strategies used by soil biota to overcome soil organic matter stability—why is dead organic matter left over in the soil? Geoderma 128(1–2):167–176. doi:10.1016/j.geoderma.2004.12.024

    Article  Google Scholar 

  • Elberling B, Michelsen A, Schadel C, Schuur EAG, Christiansen HH, Berg L, Tamstorf MP, Sigsgaard C (2013) Long-term CO2 production following permafrost thaw. Nature Clim Change 3(10):890–894. doi:10.1038/nclimate1955

    Article  CAS  Google Scholar 

  • Eswaran H, Vandenberg E, Reich P (1993) Organic carbon in soils of the world. Soil Sci Soc Am J 57(1):192–194

    Article  Google Scholar 

  • Eswaran H, Reich P, Kimble JM, Beinroth FM, Padmanabhan E, Moncharoen P (2000) Global carbon stocks. In: Lal R, Kimble JM, Eswaran H, Stewart BA (eds) Global climate change and pedogenic carbonates. CRC Press, Boca Raton, FL, pp 15–25

    Google Scholar 

  • Eusterhues K, Rumpel C, Kleber M, Kogel-Knabner I (2003) Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Org Geochem 34(12):1591–1600. doi:10.1016/j.orggeochem.2003.08.007

    Article  CAS  Google Scholar 

  • FAO (2009) The state of food and agriculture: livestock in balance. Food and Agriculture Organization of the United Nations, Rome 166 pp

    Google Scholar 

  • FAO (2014) Agriculture, forestry and other land use emissions by sources and removals by sinks: 1990–2011 analysis. Food and Agriculture Organization of the United Nations, Statistics Division, Working Paper Series, 14/01 Rome, 75 p

    Google Scholar 

  • FAO (2015) Forest resources assessment. Food and Agriculture Organization of the United Nations, Rome, 27 p

    Google Scholar 

  • FAO (2016) 2016 state of the world’s forests: forests and agriculture: land use challenges and opportunities. Food and Agriculture Organization of the United Nations, Rome, 108 p

    Google Scholar 

  • FAOSTAT (2016) Food and Agriculture Organization global statistics. Food and Agriculture Organization of the United Nations, Statistical Division. http://faostat3.fao.org/. Accessed Aug 2016

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319(5867):1235–1238. doi:10.1126/science.1152747

    Article  CAS  Google Scholar 

  • Fierer N, Allen AS, Schimel JP, Holden PA (2003) Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Glob Chang Biol 9(9):1322–1332. doi:10.1046/j.1365-2486.2003.00663.x

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309(5734):570–574. doi:10.1126/science.1111772

    Article  CAS  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478(7369):337–342. doi:10.1038/nature10452

  • Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450(7167):277–280. doi:10.1038/nature06275

    Article  CAS  Google Scholar 

  • Freeman C, Evans CD, Monteith DT, Reynolds B, Fenner N (2001) Export of organic carbon from peat soils. Nature 412(6849):785. doi:10.1038/35090628

    Article  CAS  Google Scholar 

  • Freibauer A, Rounsevell MDA, Smith P, Verhagen J (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma 122(1):1–23. doi:10.1016/j.geoderma.2004.01.021

    Article  CAS  Google Scholar 

  • Friedlingstein P, Dufresne JL, Cox PM, Rayner P (2003) How positive is the feedback between climate change and the carbon cycle? Tellus B 55(2):692–700. doi:10.1034/j.1600-0889.2003.01461.x

    Article  Google Scholar 

  • Galik CS, Jackson RB (2009) Risks to forest carbon offset projects in a changing climate. Ecol Manage 257(11):2209–2216. doi:10.1016/j.foreco.2009.03.017

    Article  Google Scholar 

  • George TS, Richardson AE, Simpson RJ (2005) Behaviour of plant-derived extracellular phytase upon addition to soil. Soil Biol Biochem 37(5):977–988. doi:10.1016/j.soilbio.2004.10.016

    Article  CAS  Google Scholar 

  • Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G (2013) Tackling climate change through livestock—a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome 115

    Google Scholar 

  • Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty N, Foley JA (2010) Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc Natl Acad Sci USA 107(38):16732–16737. doi:10.1073/pnas.0910275107

    Article  CAS  Google Scholar 

  • Gitz V, Ciais P (2003) Amplifying effects of land-use change on future atmospheric CO2 levels. Glob Biogeochem Cy 17(1). doi:10.1029/2002gb001963

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fert Soils 35(4):219–230. doi:10.1007/s00374-002-0466-4

    Article  CAS  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818. doi:10.1126/science.1185383

    Article  CAS  Google Scholar 

  • Gornall J, Betts R, Burke E, Clark R, Camp J, Willett K, Wiltshire A (2010) Implications of climate change for agricultural productivity in the early twenty-first century. Philos T R Soc B 365(1554):2973–2989. doi:10.1098/rstb.2010.0158

    Article  Google Scholar 

  • Gray M, Johnson MG, Dragila MI, Kleber M (2014) Water uptake in biochars: the roles of porosity and hydrophobicity. Biomass Bioenerg 61:196–205. doi:10.1016/j.biombioe.2013.12.010

    Article  CAS  Google Scholar 

  • Gulde S, Chung H, Amelung W, Chang C, Six J (2008) Soil carbon saturation controls labile and stable carbon pool dynamics. Soil Sci Soc Am J 72(3):605–612. doi:10.2136/sssaj2007.0251

    Article  CAS  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Chang Biol 8(4):345–360. doi:10.1046/j.1354-1013.2002.00486.x

    Article  Google Scholar 

  • Guo Z, Cai C, Li Z, Wang T, Zheng M (2009) Crop residue effect on crop performance, soil N2O and CO2 emissions in alley cropping systems in subtropical China. Agrofor Syst 76(1):67–80

    Article  Google Scholar 

  • Gutierrez-Banuelos H, Anderson RC, Carstens GE, Slay LJ, Ramlachan N, Horrocks SM, Callaway TR, Edrington TS, Nisbet DJ (2007) Zoonotic bacterial populations, gut fermentation characteristics and methane production in feedlot steers during oral nitroethane treatment and after the feeding of an experimental chlorate product. Anaerobe 13(1):21–31. doi:10.1016/j.anaerobe.2006.11.002

    Article  CAS  Google Scholar 

  • Hagerty SB, van Groenigen KJ, Allison SD, Hungate BA, Schwartz E, Koch GW, Kolka RK, Dijkstra P (2014) Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat Clim Change 4(10):903–906. doi:10.1038/nclimate2361

    Article  CAS  Google Scholar 

  • Hamer U, Marschner B, Brodowski S, Amelung W (2004) Interactive priming of black carbon and glucose mineralisation. Org Geochem 35(7):823–830. doi:10.1016/j.orggeochem.2004.03.003

    Article  CAS  Google Scholar 

  • Hashimoto S, Morishita T, Sakata T, Ishizuka S, Kaneko S, Takahashi M (2011) Simple models for soil CO2, CH4, and N2O fluxes calibrated using a Bayesian approach and multi-site data. Ecol Model 222(7):1283–1292. doi:10.1016/j.ecolmodel.2011.01.013

    Article  CAS  Google Scholar 

  • Hashimoto S, Carvalhais N, Ito A, Migliavacca M, Nishina K, Reichstein M (2015) Global spatiotemporal distribution of soil respiration modeled using a global database. BioGeosciences 12(13):4121–4132. doi:10.5194/bg-12-4121-2015

    Article  Google Scholar 

  • Henault C, Grossel A, Mary B, Roussel M, Leonard J (2012) Nitrous oxide emission by agricultural soils: a review of spatial and temporal variability for mitigation. Pedosphere 22(4):426–433

    Article  CAS  Google Scholar 

  • Hernes PJ, Robinson AC, Aufdenkampe AK (2007) Fractionation of lignin during leaching and sorption and implications for organic matter “freshness”. Geophys Res Lett 34(17). doi:10.1029/2007gl031017

  • Herrero M, Havlik P, Valin H, Notenbaert A, Rufino MC, Thornton PK, Blummel M, Weiss F, Grace D, Obersteiner M (2013) Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc Natl Acad Sci USA 110(52):20888–20893. doi:10.1073/pnas.1308149110

    Article  CAS  Google Scholar 

  • Herrero M, Henderson B, Havlik P, Thornton PK, Conant RT, Smith P, Wirsenius S, Hristov AN, Gerber P, Gill M, Butterbach-Bahl K, Valin H, Garnett T, Stehfest E (2016) Greenhouse gas mitigation potentials in the livestock sector. Nature Clim Change 6(5):452–461. doi:10.1038/nclimate2925

    Article  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58(9):2369–2387. doi:10.1093/jxb/erm097

    Article  CAS  Google Scholar 

  • Houghton RA (2012) Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Curr Opin Environ Sust 4(6):597–603. doi:10.1016/j.cosust.2012.06.006

    Article  Google Scholar 

  • Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, Le Quere C, Ramankutty N (2012) Carbon emissions from land use and land-cover change. BioGeosciences 9(12): 5125–5142. doi:10.5194/bg-9-5125-2012

  • Houghton RA, Hackler JL, Lawrence KT (1999) The US carbon budget: contributions from land-use change. Science 285(5427):574–578. doi:10.1126/science.285.5427.574

    Article  CAS  Google Scholar 

  • Hristov AN, Oh J, Lee C, Montes R, Ott T, Firkins J, Rotz A, Dell C, Adesogan A, Yang W, Tricarico J, Kebreab E, Waghorn G, Djikstra J, Oosting S (2013) Mitigation of greenhouse gas emissions in livestock production: a review of technical options for non-CO2 emissions. Food and Agriculture Organization of the United Nations, Rome 206

    Google Scholar 

  • IBI (2012) Standardized product definition and product testing guidelines for biochar that is used in soil. International Biochar Initiative (IBI), IBI-STD-01, 47 p

    Google Scholar 

  • Imhoff ML, Bounoua L, Ricketts T, Loucks C, Harriss R, Lawrence WT (2004) Global patterns in human consumption of net primary production. Nature 429(6994):870–873. doi:10.1038/nature02619

    Article  CAS  Google Scholar 

  • Ingram J, Ericksen P, Liverman D (2010) Food security and global environmental change. Earthscan, London, 361 p

    Google Scholar 

  • Izaurralde RC, Williams JR, Post WM, Thomson AM, McGill WB, Owens LB, Lal R (2007) Long-term modeling of soil C erosion and sequestration at the small watershed scale. Clim Change 80(1–2):73–90. doi:10.1007/s10584-006-9167-6

    Article  CAS  Google Scholar 

  • Jackson RB, Randerson JT, Canadell JG, Anderson RG, Avissar R, Baldocchi DD, Bonan GB, Caldeira K, Diffenbaugh NS, Field CB, Hungate BA, Jobbagy EG, Kueppers LM, Nosetto MD, Pataki DE (2008) Protecting climate with forests. Environ Res Lett 3(4). doi:10.1088/1748-9326/3/4/044006

  • Janzen HH (2004) Carbon cycling in earth systems—a soil science perspective. Agr Environ 104(3):399–417. doi:10.1016/j.agee.2004.01.040

    Article  CAS  Google Scholar 

  • Janzen HH (2015) Beyond carbon sequestration: soil as conduit of solar energy. Eur J Soil Sci 66(1):19–32. doi:10.1111/ejss.12194

    Article  CAS  Google Scholar 

  • Jardine PM, Mayes MA, Mulholland PJ, Hanson PJ, Tarver JR, Luxmoore RJ, McCarthy JF, Wilson GV (2006) Vadose zone flow and transport of dissolved organic carbon at multiple scales in humid regimes. Vadose Zone J 5(1):140–152. doi:10.2136/vzj2005.0036

    Article  CAS  Google Scholar 

  • Jastrow JD, Amonette JE, Bailey VL (2007) Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Clim Change 80(1–2):5–23. doi:10.1007/s10584-006-9178-3

    Article  CAS  Google Scholar 

  • Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agr Environ 144(1):175–187. doi:10.1016/j.agee.2011.08.015

    Article  Google Scholar 

  • Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10(2):423–436. doi:10.2307/2641104

    Article  Google Scholar 

  • Johnston AE, Poulton PR, Coleman K (2009) Soil organic matter: its importance in sustainable agriculture and carbon dioxide fluxes. Adv Agron 101:1–57. doi:10.1016/S0065-2113(08)00801-8

    Article  Google Scholar 

  • Jones PG, Thornton PK (2009) Croppers to livestock keepers: livelihood transitions to 2050 in Africa due to climate change. Environ Sci Policy 12(4):427–437. doi:10.1016/j.envsci.2008.08.006

    Article  Google Scholar 

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76(1):1–10

    Article  Google Scholar 

  • Kaiser K, Guggenberger G (2000) The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org Geochem 31(7–8):711–725. doi:10.1016/s0146-6380(00)00046-2

    Article  CAS  Google Scholar 

  • Karstensen J, Peters GP, Andrew RM (2013) Attribution of CO2 emissions from Brazilian deforestation to consumers between 1990 and 2010. Environ Res Lett 8(2). doi:10.1088/1748-9326/8/2/024005

  • Kindermann G, Obersteiner M, Sohngen B, Sathaye J, Andrasko K, Rametsteiner E, Schlamadinger B, Wunder S, Beach R (2008) Global cost estimates of reducing carbon emissions through avoided deforestation. Proc Natl Acad Sci USA 105(30):10302–10307. doi:10.1073/pnas.0710616105

    Article  CAS  Google Scholar 

  • Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque JF, Langenfelds RL, Le Quere C, Naik V, O’Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G (2013) Three decades of global methane sources and sinks. Nat Geosci 6(10):813–823. doi:10.1038/ngeo1955

    Article  CAS  Google Scholar 

  • Kleber M (2010) What is recalcitrant soil organic matter? Environ Chem 7(4):320–332. doi:10.1071/en10006

    Article  CAS  Google Scholar 

  • Knoblauch C, Beer C, Sosnin A, Wagner D, Pfeiffer EM (2013) Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Glob Chang Biol 19(4):1160–1172. doi:10.1111/gcb.12116

    Article  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34(2):139–162. doi:10.1016/s0038-0717(01)00158-4

    Article  Google Scholar 

  • Kong AYY, Six J (2010) Tracing root vs. residue carbon into soils from conventional and alternative cropping systems. Soil Sci Soc Am J 74(4):1201–1210. doi:10.2136/sssaj2009.0346

    Article  CAS  Google Scholar 

  • Kong AYY, Six J, Bryant DC, Denison RF, van Kessel C (2005) The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Sci Soc Am J 69(4):1078–1085. doi:10.2136/sssaj2004.0215

    Article  CAS  Google Scholar 

  • Kraimer RA, Monger HC (2009) Carbon isotopic subsets of soil carbonate-A particle size comparison of limestone and igneous parent materials. Geoderma 150(1–2):1–9. doi:10.1016/j.geoderma.2008.11.042

    Article  CAS  Google Scholar 

  • Kramer C, Gleixner G (2008) Soil organic matter in soil depth profiles: distinct carbon preferences of microbial groups during carbon transformation. Soil Biol Biochem 40(2):425–433. doi:10.1016/j.soilbio.2007.09.016

    Article  CAS  Google Scholar 

  • Krausmann F, Erb K-H, Gingrich S, Haberl H, Bondeau A, Gaube V, Lauk C, Plutzar C, Searchinger TD (2013) Global human appropriation of net primary production doubled in the 20th century. Proc Natl Acad Sci USA 110(25):10324–10329. doi:10.1073/pnas.1211349110

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42(9):1363–1371. doi:10.1016/j.soilbio.2010.04.003

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil review. J Plant Nutr Soil Sci 163(4):421–431. doi:10.1002/1522-2624(200008)163:4<421:aid-jpln421>3.0.co;2-r

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Kretzschmar A, Stahr K (1999) Contribution of Lolium perenne rhizodeposition to carbon turnover of pasture soil. Plant Soil 213(1–2):127–136. doi:10.1023/a:1004566027237

    Article  CAS  Google Scholar 

  • Laird DA, Chappell MA, Martens DA, Wershaw RL, Thompson M (2008) Distinguishing black carbon from biogenic humic substances in soil clay fractions. Geoderma 143(1–2):115–122. doi:10.1016/j.geoderma.2007.10.025

    Article  CAS  Google Scholar 

  • Lal R (2001) World cropland soils as a source or sink for atmospheric carbon. Adv Agron 71:145–191. doi:10.1016/s0065-2113(01)71014-0

    Article  Google Scholar 

  • Lal R (2003) Soil erosion and the global carbon budget. Environ Int 29(4):437–450. doi:10.1016/s0160-4120(02)00192-7

    Article  CAS  Google Scholar 

  • Lal R (2004a) Carbon emission from farm operations. Environ Int 30(7):981–990. doi:10.1016/j.envint.2004.03.005

    Article  CAS  Google Scholar 

  • Lal R (2004b) Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–1627. doi:10.1126/science.1097396

    Article  CAS  Google Scholar 

  • Lal R (2004c) Soil carbon sequestration to mitigate climate change. Geoderma 123(1–2):1–22. doi:10.1016/j.geoderma.2004.01.032

    Article  CAS  Google Scholar 

  • Lal R (2008) Carbon sequestration. Philos T R Soc B 363(1492):815–830. doi:10.1098/rstb.2007.2185

    Article  CAS  Google Scholar 

  • Lal R (2011) Sequestering carbon in soils of agro-ecosystems. Food Policy 36:S33–S39. doi:10.1016/j.foodpol.2010.12.001

    Article  Google Scholar 

  • Lal R (2015) Soil carbon sequestration and aggregation by cover cropping. J Soil Water Conserv 70(6):329–339. doi:10.2489/jswc.70.6.329

    Article  Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30(3):673–690. doi:10.1016/j.biotechadv.2011.11.008

    Article  CAS  Google Scholar 

  • Lamb D, Erskine PD, Parrotta JA (2005) Restoration of degraded tropical forest landscapes. Science 310(5754):1628–1632. doi:10.1126/science.1111773

    Article  CAS  Google Scholar 

  • Lapola DM, Schaldach R, Alcamo J, Bondeau A, Koch J, Koelking C, Priess JA (2010) Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proc Natl Acad Sci USA 107(8):3388–3393. doi:10.1073/pnas.0907318107

    Article  CAS  Google Scholar 

  • Le Quéré C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA, Keeling RF, Alin S, Andrews OD, Anthoni P, Barbero L, Bopp L, Chevallier F, Chini LP, Ciais P, Currie K, Delire C, Doney SC, Friedlingstein P, Gkritzalis T, Harris I, Hauck J, Haverd V, Hoppema M, Klein Goldewijk K, Jain AK, Kato E, Körtzinger A, Landschützer P, Lefèvre N, Lenton A, Lienert S, Lombardozzi D, Melton JR, Metzl N, Millero F, Monteiro PMS, Munro DR, Nabel JEMS, Nakaoka SI, O’Brien K, Olsen A, Omar AM, Ono T, Pierrot D, Poulter B, Rödenbeck C, Salisbury J, Schuster U, Schwinger J, Séférian R, Skjelvan I, Stocker BD, Sutton AJ, Takahashi T, Tian H, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, Viovy N, Walker AP, Wiltshire AJ, Zaehle S (2016) Global carbon budget 2016. Earth Syst Sci Data 8(2): 605–649. doi:10.5194/essd-8-605-2016

  • Le Quéré C, Moriarty R, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Friedlingstein P, Peters GP, Andres RJ, Boden TA, Houghton RA, House JI, Keeling RF, Tans P, Arneth A, Bakker DCE, Barbero L, Bopp L, Chang J, Chevallier F, Chini LP, Ciais P, Fader M, Feely RA, Gkritzalis T, Harris I, Hauck J, Ilyina T, Jain AK, Kato E, Kitidis V, Goldewijk KK, Koven C, Landschuetzer P, Lauvset SK, Lefevre N, Lenton A, Lima ID, Metzl N, Millero F, Munro DR, Murata A, Nabel JEMS, Nakaoka S, Nojiri Y, O’Brien K, Olsen A, Ono T, Perez FF, Pfeil B, Pierrot D, Poulter B, Rehder G, Roedenbeck C, Saito S, Schuster U, Schwinger J, Seferian R, Steinhoff T, Stocker BD, Sutton AJ, Takahashi T, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, van Heuven S, Vandemark D, Viovy N, Wiltshire A, Zaehle S, Zeng N (2015) Global carbon budget 2015. Earth Sys Data 7(2):349–396. doi:10.5194/essd-7-349-2015

    Article  Google Scholar 

  • Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5(7):381–387. doi:10.1890/1540-9295(2007)5[381:bitb]2.0.co;2

    Article  Google Scholar 

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528(7580):60–68. doi:10.1038/nature16069

    Article  CAS  Google Scholar 

  • Lenton TM (2010) The potential for land-based biological CO2 removal to lower future atmospheric CO2 concentration. Carbon Manage 1(1):145–160

    Article  CAS  Google Scholar 

  • Lisboa CC, Butterbach-Bahl K, Mauder M, Kiese R (2011) Bioethanol production from sugarcane and emissions of greenhouse gases—known and unknowns. GCB Bioenergy 3(4):277–292. doi:10.1111/j.1757-1707.2011.01095.x

    Article  CAS  Google Scholar 

  • Liu M, Ussiri DAN, Lal R (2016) Soil organic carbon and nitrogen fractions under different land uses and tillage practices. Commun Soil Sci Plant Anal 47(12):1528–1541. doi:10.1080/00103624.2016.1194993

    Article  CAS  Google Scholar 

  • Lobell DB, Roberts MJ, Schlenker W, Braun N, Little BB, Rejesus RM, Hammer GL (2014) Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344(6183):516–519. doi:10.1126/science.1251423

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R (2005) The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. In: Sparks DL (ed) Advances in agronomy, vol 88, pp 35–66. doi:10.1016/s0065-2113(05)88002-2

  • Luo YQ, White LW, Canadell JG, DeLucia EH, Ellsworth DS, Finzi AC, Lichter J, Schlesinger WH (2003) Sustainability of terrestrial carbon sequestration: a case study in Duke Forest with inversion approach. Glob Biogeochem Cy 17(1). doi:10.1029/2002gb001923

  • Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ 22(6):715–740. doi:10.1046/j.1365-3040.1999.00453.x

    Article  CAS  Google Scholar 

  • Martens DA, Emmerich W, McLain JET, Johnsen TN (2005) Atmospheric carbon mitigation potential of agricultural management in the southwestern USA. Soil Till Res 83(1):95–119. doi:10.1016/j.still.2005.02.011

    Article  Google Scholar 

  • MEA (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Mobley ML, Lajtha K, Kramer MG, Bacon AR, Heine PR, Richter DD (2015) Surficial gains and subsoil losses of soil carbon and nitrogen during secondary forest development. Glob Chang Biol 21(2):986–996. doi:10.1111/gcb.12715

    Article  Google Scholar 

  • Monger HC, Galleros RA (2000) Biotic and abiotic processes and rates of pedogenic carbonate accumulation in the southwestern United States—relationship to atmospheric CO2 sequestration. In: Lal R, Kimble JM, Eswaran H, Stewart BA (eds) Global climate change and pedogenic carbonates. Lewis Publishers, Boca Raton, FL, pp 273–290

    Google Scholar 

  • Monger HC, Kraimer RA, Khresat S, Cole DR, Wang XJ, Wang JP (2015) Sequestration of inorganic carbon in soil and groundwater. Geology 43(5):375–378. doi:10.1130/g36449.1

    Article  CAS  Google Scholar 

  • Morales SE, Holben WE (2011) Linking bacterial identities and ecosystem processes: can ‘omic’ analyses be more than the sum of their parts? FEMS Microbiol Ecol 75(1):2–16. doi:10.1111/j.1574-6941.2010.00938.x

    Article  CAS  Google Scholar 

  • Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A 407(1–2):1–19. doi:10.1016/j.apcata.2011.08.046

    Article  CAS  Google Scholar 

  • Mukherjee A, Lal R (2014) The biochar dilemma. Soil Res 52(3):217–230. doi:10.1071/sr13359

    Article  CAS  Google Scholar 

  • Murchie EH, Niyogi KK (2011) Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol 155(1):86–92. doi:10.1104/pp.110.168831

    Article  CAS  Google Scholar 

  • Murty D, Kirschbaum MUF, McMurtrie RE, McGilvray A (2002) Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature. Glob Chang Biol 8(2):105–123. doi:10.1046/j.1354-1013.2001.00459.x

    Article  Google Scholar 

  • Myhre G, Shindell D, F.-M. Bréon WC, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 659–780

    Google Scholar 

  • Nabuurs GJ, Lindner M, Verkerk PJ, Gunia K, Deda P, Michalak R, Grassi G (2013) First signs of carbon sink saturation in European forest biomass. Nature Clim Change 3(9):792–796. doi:10.1038/nclimate1853

    Article  CAS  Google Scholar 

  • Naiman Z, Quade J, Patchett PJ (2000) Isotopic evidence for eolian recycling of pedogenic carbonate and variations in carbonate dust sources throughout the Southwest United States. Geochim Cosmochim Acta 64(18):3099–3109. doi:10.1016/s0016-7037(00)00410-5

    Article  CAS  Google Scholar 

  • Nair PKR, Mohan Kumar B, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. Journal of Plant Nutrition and Soil Science 172(1): 10–23. doi:10.1002/jpln.200800030

  • Nelissen V, Rutting T, Huygens D, Staelens J, Ruysschaert G, Boeckx P (2012) Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biol Biochem 55:20–27. doi:10.1016/j.soilbio.2012.05.019

    Article  CAS  Google Scholar 

  • Nierop KGJ, Verstraten JM (2003) Organic matter formation in sandy subsurface horizons of Dutch coastal dunes in relation to soil acidification. Org Geochem 34(4):499–513. doi:10.1016/s0146-6380(02)00249-8

    Article  CAS  Google Scholar 

  • Nierop KGJ, Naafs DFW, Verstraten JM (2003) Occurrence and distribution of ester-bound lipids in Dutch coastal dune soils along a pH gradient. Org Geochem 34(6):719–729. doi:10.1016/s0146-6380(03)00042-1

    Article  CAS  Google Scholar 

  • Nordt LC, Hallmark CT, Wilding LP, Boutton TW (1998) Quantifying pedogenic carbonate accumulations using stable carbon isotopes. Geoderma 82(1–3):115–136. doi:10.1016/s0016-7061(97)00099-2

    Article  Google Scholar 

  • O’Mara FP (2011) The significance of livestock as a contributor to global greenhouse gas emissions today and in the near future. Anim Feed Sci Technol 166–67:7–15. doi:10.1016/j.anifeedsci.2011.04.074

    Article  CAS  Google Scholar 

  • Oenema O, Wrage N, Velthof GL, van Groenigen JW, Dolfing J, Kuikman PJ (2005) Trends in global nitrous oxide emissions from animal production systems. Nutr Cycl Agroecosyst 72(1):51–65. doi:10.1007/s10705-004-7354-2

    Article  CAS  Google Scholar 

  • Olderman LR (1998) Soil degradation: a threat to food security. International Soil Reference and Information Center, 98/01 Wageningen, The Netherlands, p 14

    Google Scholar 

  • Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R, Hanson MR, Hibberd JM, Long SP, Moore TA, Moroney J, Niyogi KK, Parry MAJ, Peralta-Yahya PP, Prince RC, Redding KE, Spalding MH, van Wijk KJ, Vermaas WFJ, von Caemmerer S, Weber APM, Yeates TO, Yuan JS, Zhu XG (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci USA 112(28):8529–8536. doi:10.1073/pnas.1424031112

    Article  CAS  Google Scholar 

  • Ouyang DS, MacKenzie AF, Fan MX (1999) Availability of banded triple superphosphate with urea and phosphorus use efficiency by corn. Nutr Cycl Agroecosyst 53(3):237–247. doi:10.1023/a:1009776706425

    Article  Google Scholar 

  • Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard RF, Ciais P, Moorcroft P, Caspersen JP, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon ME, Fan SM, Sarmiento JL, Goodale CL, Schimel D, Field CB (2001) Consistent land- and atmosphere-based US carbon sink estimates. Science 292(5525):2316–2320. doi:10.1126/science.1057320

    Article  CAS  Google Scholar 

  • Pacheco D, Waghorn G, Janssen PH (2014) Decreasing methane emissions from ruminants grazing forages: a fit with productive and financial realities? Anim Prod Sci 54(9):1141–1154. doi:10.1071/an14437

    CAS  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333(6045):988–993. doi:10.1126/science.1201609

    Article  CAS  Google Scholar 

  • Parry M, Madgwick P, Carvalho J, Andralojc P (2007) Prospects for increasing photosynthesis by overcoming the limitations of Rubisco. J Agric Sci 145:31–43. doi:10.1017/S0021859606006666

  • Piccolo A (2002) The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science. Adv Agron 75:57–134. doi:10.1016/s0065-2113(02)75003-7

    Article  CAS  Google Scholar 

  • Pielke RA, Adegoke JO, Chase TN, Marshall CH, Matsui T, Niyogi D (2007) A new paradigm for assessing the role of agriculture in the climate system and in climate change. Agric Forest Metoorol 142(2–4):234–254. doi:10.1016/j.agrformet.2006.06.012

    Article  Google Scholar 

  • Poeplau C, Don A, Vesterdal L, Leifeld J, Van Wesemael B, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone—carbon response functions as a model approach. Glob Chang Biol 17(7):2415–2427. doi:10.1111/j.1365-2486.2011.02408.x

    Article  Google Scholar 

  • Post WM, Izaurralde RC, West TO, Liebig MA, King AW (2012) Management opportunities for enhancing terrestrial carbon dioxide sinks. Front Ecol Environ 10(10):554–561. doi:10.1890/120065

    Article  Google Scholar 

  • Power AG (2010) Ecosystem services and agriculture: tradeoffs and synergies. Philos T R Soc B 365(1554):2959–2971. doi:10.1098/rstb.2010.0143

    Article  Google Scholar 

  • Powlson DS, Whitmore AP, Goulding KWT (2011) Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur J Soil Sci 62(1):42–55. doi:10.1111/j.1365-2389.2010.01342.x

    Article  CAS  Google Scholar 

  • Preston CM, Schmidt MWI (2006) Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. BioGeosciences 3(4):397–420

    Article  CAS  Google Scholar 

  • Price GD, Pengelly JJL, Forster B, Du JH, Whitney SM, von Caemmerer S, Badger MR, Howitt SM, Evans JR (2013) The cyanobacterial CCM as a source of genes for improving photosynthetic CO2 fixation in crop species. J Exp Bot 64(3):753–768. doi:10.1093/jxb/ers257

    Article  CAS  Google Scholar 

  • Qian KZ, Kumar A, Zhang HL, Bellmer D, Huhnke R (2015) Recent advances in utilization of biochar. Renew Sust Energ Rev 42:1055–1064. doi:10.1016/j.rser.2014.10.074

    Article  CAS  Google Scholar 

  • Raich JW, Potter CS (1995) Global patterns of carbon-dioxide emissions from soils. Glob Biogeochem Cy 9(1):23–36. doi:10.1029/94gb02723

  • Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob Biogeochem Cy 22(1). doi:10.1029/2007gb002952

  • Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269(1–2):341–356. doi:10.1007/s11104-004-0907-y

    Article  CAS  Google Scholar 

  • Ravindranath NH, Ostwald M (2008) Carbon inventory methods: handbook for greenhouse gas inventory, carbon mitigation and roundwood production projects. Springer, Berlin

    Book  Google Scholar 

  • Reichstein M, Beer C (2008) Soil respiration across scales: the importance of a model-data integration framework for data interpretation. J Plant Nutr Soil Sci 171(3):344–354. doi:10.1002/jpln.200700075

    Article  CAS  Google Scholar 

  • Rimmer DL (2006) Free radicals, antioxidants, and soil organic matter recalcitrance. Eur J Soil Sci 57(2):91–94. doi:10.1111/j.1365-2389.2005.00735.x

    Article  CAS  Google Scholar 

  • Rimmer DL, Smith AM (2009) Antioxidants in soil organic matter and in associated plant materials. Eur J Soil Sci 60(2):170–175. doi:10.1111/j.1365-2389.2008.01099.x

    Article  CAS  Google Scholar 

  • Rimmer D, McKenna B, Vaughan S, Menzies N (2013) Antioxidant capacity and rate of decomposition of organic amendments in a Vertisol. Eur J Soil Sci 64(1):104–109

    Article  CAS  Google Scholar 

  • Rockstrom J, Steffen W, Noone K, Persson A, Chapin FS, Lambin E, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley J (2009) Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc 14(2)

    Google Scholar 

  • Rumpel C, Kogel-Knabner I (2011) Deep soil organic matter-a key but poorly understood component of terrestrial C cycle. Plant Soil 338(1–2):143–158. doi:10.1007/s11104-010-0391-5

    Article  CAS  Google Scholar 

  • Rumpel C, Knicker H, Kogel-Knabner I, Huttl RF (1998) Airborne contamination of immature soil (Lusatian mining district) by lignite-derived materials: its detection and contribution to the soil organic matter budget. Water Air Soil Pollut 105(1–2):481–492. doi:10.1023/a:1005080820520

    Article  CAS  Google Scholar 

  • Rumpel C, Kogel-Knabner I, Bruhn F (2002) Vertical distribution, age, and chemical composition of organic, carbon in two forest soils of different pedogenesis. Org Geochem 33(10):1131–1142. doi:10.1016/s0146-6380(02)00088-8

    Article  CAS  Google Scholar 

  • Saarsalmi A, Tamminen P, Kukkola M, Hautajärvi R (2010) Whole-tree harvesting at clear-felling: Impact on soil chemistry, needle nutrient concentrations and growth of Scots pine. Scand J Res 25(2):148–156. doi:10.1080/02827581003667314

    Article  Google Scholar 

  • Sadras VO, Richards RA (2014) Improvement of crop yield in dry environments: benchmarks, levels of organisation and the role of nitrogen. J Exp Bot 65(8):1981–1995. doi:10.1093/jxb/eru061

    Article  CAS  Google Scholar 

  • Sarmiento JL, Gruber N (2002) Sinks for anthropogenic carbon. Phys Today 55(8):30–36. doi:10.1063/1.1510279

    Article  CAS  Google Scholar 

  • Sathaye J, Makundi W, Dale L, Chan P, Andrasko K (2006) GHG mitigation potential, costs and benefits in global forests: a dynamic partial equilibrium approach. Energy J 127–162

    Google Scholar 

  • Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35(4):549–563. doi:10.1016/s0038-0717(03)00015-4

    Article  CAS  Google Scholar 

  • Schlesinger WH (1985) The formation of caliche in soils of the Mojave desert, California. Geochimica Et Cosmochimica Acta 49(1): 57–66. doi:10.1016/0016-7037(85)90191-7

  • Schlesinger WH (2000) Carbon sequestration in soils: some cautions amidst optimism. Agr Environ 82(1–3):121–127. doi:10.1016/s0167-8809(00)00221-8

    Article  CAS  Google Scholar 

  • Schmidhuber J, Tubiello FN (2007) Global food security under climate change. Proc Natl Acad Sci USA 104(50):19703–19708. doi:10.1073/pnas.0701976104

    Article  CAS  Google Scholar 

  • Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Glob Biogeochem Cy 14(3):777–793. doi:10.1029/1999gb001208

    Article  CAS  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56. doi:10.1038/nature10386

    Article  CAS  Google Scholar 

  • Schulze ED, Luyssaert S, Ciais P, Freibauer A, Janssens IA, Soussana JF, Smith P, Grace J, Levin I, Thiruchittampalam B, Heimann M, Dolman AJ, Valentini R, Bousquet P, Peylin P, Peters W, Rodenbeck C, Etiope G, Vuichard N, Wattenbach M, Nabuurs GJ, Poussi Z, Nieschulze J, Gash JH, CarboEurope T (2009) Importance of methane and nitrous oxide for Europe’s terrestrial greenhouse-gas balance. Nat Geosci 2(12):842–850. doi:10.1038/ngeo686

    Article  CAS  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong FX, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240. doi:10.1126/science.1151861

    Article  CAS  Google Scholar 

  • Sen S, Chalk PM (1994) Solubilization of soil organic-N by alkaline-hydrolyzing n-fertilizers. Fertilizer Res 38(2):131–139. doi:10.1007/bf00748773

    Article  CAS  Google Scholar 

  • Singh BP, Cowie AL, Smernik RJ (2012) Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ Sci Technol 46(21):11770–11778. doi:10.1021/es302545b

    Article  CAS  Google Scholar 

  • Sinsabaugh RL (2010) Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42(3): 391–404. doi:10.1016/j.soilbio.2009.10.014

  • Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Waldrop MP, Wallenstein MD, Zak DR, Zeglin LH (2008) Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11(11):1252–1264. doi:10.1111/j.1461-0248.2008.01245.x

    Google Scholar 

  • Sitch S, Friedlingstein P, Gruber N, Jones SD, Murray-Tortarolo G, Ahlstrom A, Doney SC, Graven H, Heinze C, Huntingford C, Levis S, Levy PE, Lomas M, Poulter B, Viovy N, Zaehle S, Zeng N, Arneth A, Bonan G, Bopp L, Canadell JG, Chevallier F, Ciais P, Ellis R, Gloor M, Peylin P, Piao SL, Le Quere C, Smith B, Zhu Z, Myneni R (2015) Recent trends and drivers of regional sources and sinks of carbon dioxide. BioGeosciences 12(3):653–679. doi:10.5194/bg-12-653-2015

    Article  CAS  Google Scholar 

  • Six J (2013) Conservation: spare our restored soil. Nature 498(7453):180–181

    Article  CAS  Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241(2):155–176. doi:10.1023/a:1016125726789

    Article  CAS  Google Scholar 

  • Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between micro-aggregates, soil biota, and soil organic matter dynamics. Soil Till Res 79(1):7–31. doi:10.1016/j.still.2004.03.008

    Article  Google Scholar 

  • Smith P (2005) An overview of the permanence of soil organic carbon stocks: influence of direct human-induced, indirect and natural effects. Eur J Soil Sci 56(5):673–680. doi:10.1111/j.1365-2389.2005.00708.x

    Article  CAS  Google Scholar 

  • Smith P, Gregory PJ (2013) Climate change and sustainable food production. Proc Nutr Soc 72(1):21–28. doi:10.1017/s0029665112002832

    Article  Google Scholar 

  • Smith P, Haberl H, Popp A, Erb KH, Lauk C, Harper R, Tubiello FN, Pinto AD, Jafari M, Sohi S, Masera O, Bottcher H, Berndes G, Bustamante M, Ahammad H, Clark H, Dong HM, Elsiddig EA, Mbow C, Ravindranath NH, Rice CW, Abad CR, Romanovskaya A, Sperling F, Herrero M, House JI, Rose S (2013) How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob Chang Biol 19(8): 2285–2302. doi:10.1111/gcb.12160

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O (2007) Agriculture. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, United Kingdom and New York, USA, pp 497–540

    Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Philos T R Soc B 363(1492):789–813. doi:10.1098/rstb.2007.2184

    Article  CAS  Google Scholar 

  • Smith P, Bustamante M, Ahammad H, Clark H, Dong H, Elsiddig EA, Haberl H, Harper R, House J, Jafari M, Masera O, Mbow C, Ravindranath NH, Rice CW, Abad CR, Romanovskaya A, Sperling F, Tubiello F (2014) Agriculture, forestry and other land use (AFOLU). In: Edenhofer O, Pichs-Madruga R, Sokona Y et al (eds) Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 811–922

    Google Scholar 

  • Sohi S, Lopez-Capel E, Krull E, Bo R (2009) Biochar, climate change and soil: a review to guide future research. CSIRO Land and Water Science, Report 05/09 Clayton South Victoria, Australia, p 54

    Google Scholar 

  • Sollins P, Homann P, Caldwell BA (1996) Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74(1–2):65–105. doi:10.1016/s0016-7061(96)00036-5

    Article  Google Scholar 

  • Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329(5993):790–792. doi:10.1126/science.1189268

    Article  CAS  Google Scholar 

  • Spokas KA (2013) Impact of biochar field aging on laboratory greenhouse gas production potentials. GCB Bioenergy 5(2):165–176. doi:10.1111/gcbb.12005

    Article  CAS  Google Scholar 

  • Srivastava P, Kumar A, Behera SK, Sharma YK, Singh N (2012) Soil carbon sequestration: an innovative strategy for reducing atmospheric carbon dioxide concentration. Biodivers Conserv 21(5):1343–1358. doi:10.1007/s10531-012-0229-y

    Article  Google Scholar 

  • Steinfeld H, gerber H, Wassenaar H, Castel V, Rosales M, de Haan C (2006) Livestock’s long shadow environmental issues and options. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Stewart CE, Paustian K, Conant RT, Plante AF, Six J (2007) Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry 86(1):19–31. doi:10.1007/s10533-007-9140-0

    Article  CAS  Google Scholar 

  • Sutton R, Sposito G (2005) Molecular structure in soil humic substances: the new view. Environ Sci Technol 39(23):9009–9015. doi:10.1021/es050778q

    Article  CAS  Google Scholar 

  • Suzuki Y, Ohkubo M, Hatakeyama H, Ohashi K, Yoshizawa R, Kojima S, Hayakawa T, Yamaya T, Mae T, Makino A (2007) Increased Rubisco content in transgenic rice transformed with the ‘sense’ rbcS gene. Plant Cell Physiol 48(4):626–637. doi:10.1093/pcp/pcm035

    Article  CAS  Google Scholar 

  • Swain PK, Das LM, Naik SN (2011) Biomass to liquid: a prospective challenge to research and development in 21st century. Renew Sust Energ Rev 15(9):4917–4933. doi:10.1016/j.rser.2011.07.061

    Article  CAS  Google Scholar 

  • Thaymuang W, Kheoruenromne I, Suddhipraharn A, Sparks DL (2013) The role of mineralogy in organic matter stabilization in tropical soils. Soil Sci 178(6):308–315. doi:10.1097/SS.0b013e3182a4dac4

    CAS  Google Scholar 

  • Thomson AM, Izaurralde RC, Smith SJ, Clarke LE (2008) Integrated estimates of global terrestrial carbon sequestration. Glob Environ Chang 18(1):192–203. doi:10.1016/j.gloenvcha.2007.10.002

    Article  Google Scholar 

  • Tian H, Chen G, Lu C, Xu X, Hayes DJ, Ren W, Pan S, Huntzinger DN, Wofsy SC (2015) North American terrestrial CO2 uptake largely offset by CH4 and N2O emissions: toward a full accounting of the greenhouse gas budget. Clim Change 129(3):413–426. doi:10.1007/s10584-014-1072-9

    Article  CAS  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 108(50):20260–20264. doi:10.1073/pnas.1116437108

    Article  CAS  Google Scholar 

  • Toberman H, Freeman C, Evans C, Fenner N, Artz RR (2008) Summer drought decreases soil fungal diversity and associated phenol oxidase activity in upland Calluna heathland soil. FEMS Microbiol Ecol 66(2):426–436

    Article  CAS  Google Scholar 

  • Torn MS, Lapenis AG, Timofeev A, Fischer ML, Babikov BV, Harden JW (2002) Organic carbon and carbon isotopes in modern and 100-year-old-soil archives of the Russian steppe. Glob Chang Biol 8(10):941–953. doi:10.1046/j.1365-2486.2002.00477.x

    Article  Google Scholar 

  • Trumbore SE (1997) Potential responses of soil organic carbon to global environmental change. Proc Natl Acad Sci USA 94(16):8284–8291. doi:10.1073/pnas.94.16.8284

    Article  CAS  Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11(8):405–412. doi:10.1016/j.tplants.2006.06.003

    Article  CAS  Google Scholar 

  • Tubiello FN, Salvatore M, Rossi S, Ferrara A, Fitton N, Smith P (2013) The FAOSTAT database of greenhouse gas emissions from agriculture. Environ Res Lett 8(1). doi:10.1088/1748-9326/8/1/015009

  • Tubiello FN, Salvatore M, Ferrara AF, House JI, Federici S, Rossi S, Biancalani R, Golec RDC, Jacobs H, Flammini A, Prosperi P, Cardenas-Galindo P, Schmidhuber J, Sanchez MJS, Srivastava N, Smith P (2015) The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob Chang Biol 21(7):2655–2660. doi:10.1111/gcb.12865

    Article  Google Scholar 

  • UN (2015) United Nations World population prospects: the 2015 revision. Department of Economic and Social Affairs, Population Division, United Nations, New York

    Google Scholar 

  • Upson M, Burgess P (2013) Soil organic carbon and root distribution in a temperate arable agroforestry system. Plant Soil 373(1–2):43–58

    Article  CAS  Google Scholar 

  • US-EPA (2012) Global Anthropogenic non-CO2 greenhouse gas emissions: 1990–2030. Office of Atmospheric Programs, Climate Change Division, U.S. Environmental Protection Agency, EPA 430-R-12-006 Washington, DC, 188

    Google Scholar 

  • Ussiri DAN, Johnson CE (2004) Sorption of organic carbon fractions by Spodosol mineral horizons. Soil Sci Soc Am J 68(1):253–262

    Article  CAS  Google Scholar 

  • van Groenigen KJ, Qi X, Osenberg CW, Luo YQ, Hungate BA (2014) Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science 344(6183):508–509. doi:10.1126/science.1249534

    Article  CAS  Google Scholar 

  • Van Oost K, Quine TA, Govers G, De Gryze S, Six J, Harden JW, Ritchie JC, McCarty GW, Heckrath G, Kosmas C, Giraldez JV, da Silva JRM, Merckx R (2007) The impact of agricultural soil erosion on the global carbon cycle. Science 318(5850):626–629. doi:10.1126/science.1145724

    Article  CAS  Google Scholar 

  • Van Zwieten L, Kimber SWL, Morris SG, Singh BP, Grace PR, Scheer C, Rust J, Downie AE, Cowie AL (2013) Pyrolysing poultry litter reduces N2O and CO2 fluxes. Sci Total Environ 465:279–287. doi:10.1016/j.scitotenv.2013.02.054

    Article  CAS  Google Scholar 

  • VanDam D, Veldkamp E, VanBreemen N (1997) Soil organic carbon dynamics: variability with depth in forested and deforested soils under pasture in Costa Rica. Biogeochemistry 39(3):343–375. doi:10.1023/a:1005880031579

    Article  CAS  Google Scholar 

  • Vermeulen SJ, Campbell BM, Ingram JSI (2012) Climate change and food systems. Annu Rev Environ Resour 37:195–222. doi:10.1146/annurev-environ-020411-130608

    Article  Google Scholar 

  • von Blottnitz H, Curran MA (2007) A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. J Cleaner Prod 15(7):607–619. doi:10.1016/j.jclepro.2006.03.002

    Article  Google Scholar 

  • von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57(4):426–445. doi:10.1111/j.1365-2389.2006.00809.x

    Article  CAS  Google Scholar 

  • Wang S, Chen JM, Ju WM, Feng X, Chen M, Chen P, Yu G (2007) Carbon sinks and sources in China’s forests during 1901–2001. J Environ Manage 85(3):524–537. doi:10.1016/j.jenvman.2006.09.019

    Article  CAS  Google Scholar 

  • Wang GB, Zhou Y, Xu X, Ruan HH, Wang JS (2013) Temperature sensitivity of soil organic carbon mineralization along an eevation gradient in the Wuyi mountains, China. PLoS One 8(1). doi:10.1371/journal.pone.0053914

  • Watson RT, Noble I, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (2000) Land use, land use change, and forestry. Intergovermental panel on climate change. Cambridge University Press, Cambridge, p 20

    Google Scholar 

  • Wear DN, Coulston JW (2015) From sink to source: regional variation in US forest carbon futures. Sci Rep 5. doi:10.1038/srep16518

  • Wei X, Shao M, Gale W, Li L (2014) Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Sci Rep 4:4062–4066. doi:10.1038/srep04062. http://www.nature.com/articles/srep04062#supplementary-information

  • West TO, Six J (2007) Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Clim Change 80(1–2):25–41. doi:10.1007/s10584-006-9173-8

    Article  CAS  Google Scholar 

  • White DA, Welty-Bernard A, Rasmussen C, Schwartz E (2009) Vegetation controls on soil organic carbon dynamics in an arid, hyperthermic ecosystem. Geoderma 150(1–2):214–223. doi:10.1016/j.geoderma.2009.02.011

    Article  CAS  Google Scholar 

  • Whitmore A, Kirk G, Rawlins B (2015) Technologies for increasing carbon storage in soil to mitigate climate change. Soil Use Manage 31(S1):62–71

    Article  Google Scholar 

  • Whitney SM, Houtz RL, Alonso H (2011) Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme, Rubisco. Plant Physiol 155(1):27–35. doi:10.1104/pp.110.164814

    Article  CAS  Google Scholar 

  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Comm 1. doi:10.1038/ncomms1053

  • Xiao JF, Liu SG, Stoy PC (2016) Preface: impacts of extreme climate events and disturbances on carbon dynamics. BioGeosciences 13(12):3665–3675. doi:10.5194/bg-13-3665-2016

    Article  Google Scholar 

  • Xie J, Li Y, Zhai C, Li C, Lan Z (2009) CO2 absorption by alkaline soils and its implication to the global carbon cycle. Environ Geol 56(5):953–961

    Article  CAS  Google Scholar 

  • Xu X, Shi Z, Li D, Rey A, Ruan H, Craine JM, Liang J, Zhou J, Luo Y (2016) Soil properties control decomposition of soil organic carbon: results from data-assimilation analysis. Geoderma 262:235–242. doi:10.1016/j.geoderma.2015.08.038

    Article  CAS  Google Scholar 

  • Yan XY, Akiyama H, Yagi K, Akimoto H (2009) Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 intergovernmental panel on climate change guidelines. Glob Biogeochem Cy 23. doi:10.1029/2008gb003299

  • York LM, Nord EA, Lynch JP (2013) Integration of root phenes for soil resource acquisition. Front Plant Sci 4. doi:10.3389/fpls.2013.00355

  • Young IM, Ritz K (2000) Tillage, habitat space and function of soil microbes. Soil Till Res 53(3–4):201–213. doi:10.1016/s0167-1987(99)00106-3

    Article  Google Scholar 

  • Zamanian K, Pustovoytov K, Kuzyakov Y (2016) Pedogenic carbonates: forms and formation processes. Earth Sci Rev 157:1–17. doi:10.1016/j.earscirev.2016.03.003

    Article  CAS  Google Scholar 

  • Zhu XG, Portis AR, Long SP (2004) Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant Cell Environ 27(2):155–165. doi:10.1046/j.1365-3040.2004.01142.x

    Article  CAS  Google Scholar 

  • Zibilske L, Bradford J (2007) Oxygen effects on carbon, polyphenols, and nitrogen mineralization potential in soil. Soil Sci Soc Am J 71(1):133–139

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A.N. Ussiri .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ussiri, D.A., Lal, R. (2017). Greenhouse Gas Mitigation under Agriculture and Livestock Landuse. In: Carbon Sequestration for Climate Change Mitigation and Adaptation. Springer, Cham. https://doi.org/10.1007/978-3-319-53845-7_10

Download citation

Publish with us

Policies and ethics