Skip to main content

Forecasting with Spatial Dependencies

  • Chapter
  • First Online:
Cohort Change Ratios and their Applications
  • 268 Accesses

Abstract

With the explosion of computerized mapping and spatial modeling techniques over the last 30 years, there has been increased interest in developing small-area demographic estimation and forecasting models that incorporate spatial dependencies among geographic units. In this chapter, we illustrate small-area Hamilton-Perry (H-P) demographic forecasts that explicitly incorporate spatial dependencies. We also discuss some of the challenges and opportunities using spatial modeling in demographic forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker, J., Ruan, X. M., Alcantara, A., Jones, T., McDaniel, M., Frey, M., & Watkins, K. (2008). Density-dependence in urban housing unit growth: An evaluation of the Pearl-Reed model for predicting housing unit stock at the census tract level. Journal of Economic eand Social Measurement, 33(2–3), 155–163.

    Google Scholar 

  • Baker, J., Alcantara, A., Ruan, X. M., & Watkins, K. (2012). The impact of incomplete geocoding on small area population estimates. Journal of Population Research, 29, 91–112.

    Article  Google Scholar 

  • Baker, J., Alcantara, A., Ruan, X. M., Watkins, K., & Vasan, S. (2013). A comparative evaluation of error and bias in census tract-level age/sex-specific population estimates: Component I (Net-migration) vs Component III (Hamilton-Perry). Population Research and Policy Review, 32, 919–942.

    Article  Google Scholar 

  • Baker, J., Alcantara, A., Ruan, X. M., Watkins, K., & Vasan, S. (2014). Spatial weighting improves accuracy in small-area demographic forecasts of urban census tract populations. Journal of Population Research, 31(4), 345–359.

    Article  Google Scholar 

  • Baker, J., Alcantara, A., Ruan, X. M., Ruiz, D., & Crouse, N. (2015). Sub-county population estimates using administrative records: A municipal-level case study in New Mexico. In N. Hoque & L. Potter (Eds.), Emerging techniques in applied demography (pp. 63–80). New York: Springer.

    Google Scholar 

  • Cai, Q. (2007). New techniques in small area population estimates by demographic characteristics. Population Research and Policy Review, 26(2), 203–218.

    Article  Google Scholar 

  • Chi, G., & Voss, P. (2011). Small-area population forecasts: Borrowing strength across space and time. Population, Space, and Place, 17, 505–520.

    Article  Google Scholar 

  • Chi, G., & Wang, D. (2017). Small area population forecasting: A geographically weighted regression approach. In D. Swanson (Ed.), The frontiers of applied demography (pp. 449–472). Switzerland: Springer.

    Chapter  Google Scholar 

  • Chi, G., & Zhu, J. (2008). Spatial regression models for demographic analysis. Population Research and Policy Review, 27, 17–42.

    Article  Google Scholar 

  • DeMiguel, V., Garlappi, L., Nogales, F., & Uppal, R. (2009). A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms. Management Science, 55(5), 798–812.

    Article  Google Scholar 

  • Dobson, M., Cowen, D., & Guptill, S. (2011). Reporting the state and anticipated future directions of addresses and addressing: A report to the geography division. U.S. Census Bureau, Geographic Support System Initiative-GSS. Retrieved from http://www2.census.gov/geo/pdfs/gssi/research/GSS%20Initiative%20Addresses%20ACCEPTED.pdf

  • Fotheringham, A., Brundson, C., & Charlton, M. (2000). Quantitative geography: Perspectives on spatial data analysis. London: Sage.

    Google Scholar 

  • Fotheringham, A., Brundson, C., & Charlton, M. (2002). Geographically weighted regression: The analysis of spatially-varying relationships. West Sussex: Wiley.

    Google Scholar 

  • Fellegi, I. P. (1968). Coverage check of the 1961 Census of Population, Technical memorandum census evaluation series no. 2. Ottawa: Dominion Bureau of Statistics.

    Google Scholar 

  • Fisher, P. F., & Langford, M. (1995). Modeling the errors in areal interpolation between zonal systems using Monte Carlo simulation. Environment and Planning A, 27, 212–214.

    Article  Google Scholar 

  • Flowerdrew, R., & Green, M. (1992). Developments in areal interpolation methods and GIS. The Annals of Regional Science, 26, 67–78.

    Article  Google Scholar 

  • Flotow, M., & Burson, R. (1996). Allocation errors of birth and death records to subcounty geography. Paper presented at the annual meeting of the Population Association of America, New Orleans, LA, 11–15, May.

    Google Scholar 

  • GAO. (2015). Geospatial data: Progress needed on identifying expenditures, building and utilizing a data infrastructure, and reducing duplicative efforts, Report # GAO-15-193. Washington, DC: Government Accountability Office.

    Google Scholar 

  • Getis, A. (2009). Spatial weight matrices. Geographical Analysis, 41(4), 404–410.

    Article  Google Scholar 

  • Getis, A., & Aldstadt, J. (2004). Constructing spatial weights matrix using a local statistic. Geographical Analysis, 36(2), 90–104.

    Article  Google Scholar 

  • Gilboa, S. M. (2006). Comparison of residential geocoding methods in population-based study of air quality and birth defects. Environmental Research, 101, 256–262.

    Article  Google Scholar 

  • Goldberg, D., Wilson, J., & Knoblock, C. (2007). From text to geographic coordinates: The current state of geocoding. URISA Journal, 19(1), 33–46.

    Google Scholar 

  • Grewal, M., & Andrews, A. (1993). Kalman filtering: Theory and practice. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Hammer, R., Stewart, S., Winkler, R., Radeloff, V., & Voss, P. (2004). Characterizing dynamic spatial and temporal residential density patterns from 1940-1990 across the North Central United States. Landscape and Urban Planning, 69, 183–199.

    Article  Google Scholar 

  • Harper, G., Coleman, C., & Devine, J. (2003). Evaluation of the 2000 subcounty population estimates. Washington, DC: Population Division, U.S. Census Bureau.

    Google Scholar 

  • Hauer, M., Evans, J., & Alexander, C. (2015). Sea level rise and sub-county population projections in coastal Georgia. Population and the Environment, 37, 44–62.

    Article  Google Scholar 

  • Herold, M., Goldstein, N., & Clark, K. (2003). The spatiotemporal form of urban growth: Measurement, analysis, and modeling. Remote Sensing of Environment, 86, 286–302.

    Article  Google Scholar 

  • Hogan, H. (1993). The 1990 post-enumeration survey: Operations and Results. Journal of the American Statistical Association, 88, 1047–1060.

    Article  Google Scholar 

  • Hogan, H. (2003). The accuracy and coverage evaluation: Theory and design. Survey Methodology, 29(2), 129–138.

    Google Scholar 

  • Hogan, H., & Mulry, M. (2015). Assessing accuracy in postcensal estimates: Statistical properties of different measures. In N. Hoque & L. Potter (Eds.), Emerging techniques in applied demography (pp. 119–136). New York: Springer.

    Google Scholar 

  • Hogan, H., & Tchernis, J. (2004). Bayesian factor analysis for spatially-correlated data, with application to summarizing area-level material deprivation from census data. Journal of the American Statistical Association, 99, 314–324.

    Article  Google Scholar 

  • Hoque, N. (2010). An evaluation of small-area population estimates produced by component method II, ratio correlation, and housing unit methods for 1990. The Open Demography Journal, 3, 18–30.

    Article  Google Scholar 

  • Inoue, T. (2017). A new method for estimating small area demographics and its application to long-term population projection. In D. Swanson (Ed.), The frontiers of applied demography (pp. 431–448). Switzerland: Springer.

    Google Scholar 

  • Jarosz, B. (2008). Using assessor parcel data to maintain housing unit counts for small area population estimates. In S. Murdock & D. Swanson (Eds.), Applied demography in the 21st century (pp. 89–101). New York: Springer.

    Chapter  Google Scholar 

  • Karimi, H., Durcik, M., & Rasdorf, W. (2004). Evaluation of uncertainties associated with geocoding techniques. Computer-Aided Civil and Infrastructure Engineering, 19(3), 170–185.

    Article  Google Scholar 

  • Kuldorff, M. (1997). A spatial scan statistic. Communication in Statistics: Theory and Methods, 26, 1481–1496.

    Article  Google Scholar 

  • Kuldorff, M. (1999). An isotonic spatial scan statistic for geographical disease surveillance. Journal of the National Institute of Public Health, 48, 94–101.

    Google Scholar 

  • Le Sage, J., & Pace, K. R. (2004). Models for spatially-dependent missing data. Journal of Real Estate Finance and Economics, 29(2), 233–254.

    Article  Google Scholar 

  • Lloyd, C. (2017). Creating population surfaces for the analysis of small area. In D. Swanson (Ed.), The frontiers of applied demography (pp. 431–448). Switzerland: Springer.

    Chapter  Google Scholar 

  • Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91.

    Google Scholar 

  • NRC. (2011). Change and the 2020 census: Not whether but how. In T. Cook, J. Norwood, & D. Cork (Eds.), Panel to review the 2020 census. Washington, DC: National Academies of Science Press.

    Google Scholar 

  • Oliver, M., Matthews, K., Siadaty, K., Hauck, F., & Pickle, L. (2005). Geographic bias related to geocoding in epidemiologic studies. International Journal of Health Geographics, 4(29). doi:10.1186/1476-072X-4-29.

  • Ordorica-Mellado, M., & Garcia-Guerrero, V. (2016). Estimating the demographic dynamic of small areas with the Kalman filter. In R. Schoen (Ed.), Dynamic demographic analysis (pp. 261–271). New York: Springer.

    Chapter  Google Scholar 

  • Pace, K., & Gilly, O. R. (1997). Using the spatial configuration of data to improve estimation. The Journal of Real Estate Finance and Economics, 14(3), 330–340.

    Article  Google Scholar 

  • Pagliara, F., Preston, J., & Simmonds, D. (2010). Residential location choice: Models and applications. Berlin: Springer.

    Book  Google Scholar 

  • Pattachini, E., & Zenou, Y. (2007). Spatial dependence in local unemployment rates. Journal of Economic Geography, 7(2), 169–191.

    Article  Google Scholar 

  • Ratcliffe, J. H. (2001). On the accuracy of Tiger-type geocoded address data in relation to cadastral and census area units. International Journal of Geographic Information Science, 15, 473–485.

    Article  Google Scholar 

  • Sadahiro, Y. (2000). Accuracy of count data transferred through the areal weighting interpolation method. International Journal of Geographical Information Science, 14, 25–50.

    Article  Google Scholar 

  • Simpson, L. (2002). Geography conversion tables: A framework for conversion of data between geographical units. International Journal of Population Geography, 8, 69–82.

    Article  Google Scholar 

  • Smith, S., & Shahidullah, M. (1995). An evaluation of population projections errors for census tracts. Journal of the American Statistical Association, 429(90), 64–71.

    Article  Google Scholar 

  • Smith, S., Tayman, J., & Swanson, D. (2013). A practitioner’s guide to state and local population projections. Dordrecht: Springer.

    Book  Google Scholar 

  • Steinberg, S., & Steinberg, S. (2015). GIS research methods: Incorporating spatial perspectives. Redlands: ESRI Press.

    Google Scholar 

  • Stewart, J. (1947). Empirical and mathematical rules concerning the distribution and equilibrium of population. Geographical Review, 37(3), 461–485.

    Article  Google Scholar 

  • Swanson, D., & Tayman, J. (2012). Subnational population estimates. New York: Springer.

    Book  Google Scholar 

  • Swanson, D., & Tayman, J. (2014). Measuring uncertainty in population forecasts: A new approach employing the Hamilton-Perry method. Paper presented at the annual meeting of British Society for Population Studies, Winchester, UK, 8-10, September.

    Google Scholar 

  • Swanson, D., & Tayman, J. (2015). On the ratio-correlation regression method of population estimation and its variants. In N. Hoque & L. Potter (Eds.), Emerging techniques in applied demography (pp. 93–118). Dordrecht: Springer.

    Google Scholar 

  • Swanson, D., & Walashek, P. (2011). CEMAF as a census method: A proposal for a redesigned census and independent Census Bureau. Dordrecht: Springer.

    Book  Google Scholar 

  • Swanson, D., Schlottmann, A., & Schmidt, B. (2010). Forecasting the population of census tracts by age and sex: An example of the Hamilton-Perry method in action. Population Research and Policy Review, 29(1), 47–63.

    Article  Google Scholar 

  • Sylvester, J. (2013). The use of cadastral and CAMA data to estimate unincorporated subcounty population. Paper presented at the annual meeting of the Population Association of America, New Orleans, LA, 11–13, April.

    Google Scholar 

  • Tayman, J. (1996). The accuracy of small-area population forecasts based on a spatial interaction land use modeling system. Journal of the American Planning Association, 62(1), 85–98.

    Article  Google Scholar 

  • Tobler, W. R. (1979). Smooth pycnophylactic interpolation for geographical regions. Journal of the American Statistical Association, 74, 519–530.

    Article  Google Scholar 

  • Turnbull, B. (1976). The empirical distribution function with arbitrarily grouped, censored, and truncated data. Journal of the Royal Statistical Society Series B (Methodological), 38(3), 290–295.

    Google Scholar 

  • Vasan, S., Alcantara, A., Nefertari, N., Ruan, X. M., & Baker, J. (2015). Geography is destiny: Spatial correlations in poverty and educational attainment in a New Mexico school district. In N. Hoque & L. Potter (Eds.), Emerging techniques in applied demography (pp. 225–246). New York: Springer.

    Google Scholar 

  • Voss, P. (2007). Demography as spatial social science. Population Research and Policy Review, 26, 457–476.

    Article  Google Scholar 

  • Voss, P., Long, D., & Hammer, R. (1999). When census geography doesn’t work: Using ancillary information to improve the spatial interpolation of demographic data, Working paper no. 99-26. Madison: Center for Demography and Ecology, University of Wisconsin.

    Google Scholar 

  • Waddell, P. (2012). Parcel-level microsimulation of land use and transportation: The walking scale of urban sustainability. In Chandra Bhat and Ran Pendyala (Eds.) Travel behavior research in and evolving world (pp. 77–102). International Association for Travel Behavior Research.

    Google Scholar 

  • Ward, D., Murray, A., & Phinn, S. (2000). A stochastically constrained cellular model of urban growth. Computers, Environment, and Urban Systems, 24(6), 539–558.

    Article  Google Scholar 

  • White, R., Engelen, G., & Uljee, I. (2015). Modeling cities and regions as complex systems: From theory to planning applications. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  • Zandbergen, P. (2009). Geocoding quality and implications for spatial analysis. The Geography Compass, 3(2), 647–680.

    Article  Google Scholar 

  • Zandbergen, P., & Ignizio, D. (2010). Comparison of dasymetric mapping techniques for small area population estimates. Cartography and Geographic Information Science, 37(3), 199–214.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Baker, J., Swanson, D.A., Tayman, J., Tedrow, L.M. (2017). Forecasting with Spatial Dependencies. In: Cohort Change Ratios and their Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-53745-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53745-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53744-3

  • Online ISBN: 978-3-319-53745-0

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics