Merging Relations: A Way to Compact Petri Nets’ Behaviors Uniformly

  • Giovanni Casu
  • G. Michele PinnaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10168)


Compacting Petri nets behaviors means to develop a more succinct representation of all the possible executions of a net, still giving the capability to reason on properties fulfilled by the computations of the net. To do so suitable equivalences on alternative executions have to be engineered. We introduce a general notion of merging relation covering the existing approaches to compact behaviors and we discuss how to enforce that the more succinct net is an unravel net, namely a net where dependencies can be identified (almost) syntactically.


Petri nets Data structure compression Event structures 


  1. 1.
    Casu, G., Pinna, G.M.: Flow unfolding of multi-clock nets. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 170–189. Springer, Heidelberg (2014). doi: 10.1007/978-3-319-07734-5_10 CrossRefGoogle Scholar
  2. 2.
    Desel, J., Reisig, W.: The concepts of Petri nets. Softw. Syst. Model. 14(2), 669–683 (2015)CrossRefGoogle Scholar
  3. 3.
    Engelfriet, J.: Branching processes of Petri nets. Acta Informatica 28(6), 575–591 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding algorithm. Formal Methods Syst. Des. 20(3), 285–310 (2002)CrossRefzbMATHGoogle Scholar
  5. 5.
    Fabre, E.: Trellis processes: a compact representation for runs of concurrent systems. Discrete Event Dyn. Syst. 17(3), 267–306 (2007)CrossRefzbMATHGoogle Scholar
  6. 6.
    Khomenko, V., Kondratyev, A., Koutny, M., Vogler, W.: Merged processes: a new condensed representation of Petri net behaviour. Acta Informatica 43(5), 307–330 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Langerak, R.: Bundle event structures: a non-interleaving semantics for LOTOS. In: FORTE 1992. IFIP Transactions, vol. C-10, pp. 331–346 (1993)Google Scholar
  8. 8.
    Mazurkiewicz, A.: Basic notions of trace theory. In: Bakker, J.W., Roever, W.-P., Rozenberg, G. (eds.) REX 1988. LNCS, vol. 354, pp. 285–363. Springer, Heidelberg (1989). doi: 10.1007/BFb0013025 CrossRefGoogle Scholar
  9. 9.
    McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the verification of asynchronous circuits. In: Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 164–177. Springer, Heidelberg (1993). doi: 10.1007/3-540-56496-9_14 CrossRefGoogle Scholar
  10. 10.
    Reisig, W.: Understanding Petri Nets - Modeling Techniques, Analysis Methods, Case Studies. Springer, Heidelberg (2013)CrossRefzbMATHGoogle Scholar
  11. 11.
    Smith, E., Reisig, W.: The semantics of a net is a net: an exercise in general net theory. In: Voss, K., Genrich, H.J., Rozenberg, G. (eds.) Concurrency and Nets: Advances in Petri Nets, pp. 461–479. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  12. 12.
    Glabbeek, R.J.: The individual and collective token interpretations of Petri nets. In: Abadi, M., Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 323–337. Springer, Heidelberg (2005). doi: 10.1007/11539452_26 CrossRefGoogle Scholar
  13. 13.
    van Glabbeek, R.J., Plotkin, G.D.: Configuration structures, event structures and Petri nets. Theor. Comput. Sci. 410(41), 4111–4159 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). doi: 10.1007/3-540-17906-2_31 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaUniversità di CagliariCagliariItaly

Personalised recommendations