Advertisement

Regular and Chaotic Transition to Synchrony in a Star Configuration of Phase Oscillators

  • Vladimir N. Belykh
  • Maxim I. Bolotov
  • Grigory V. Osipov
Chapter
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 20)

Abstract

We consider two finite-dimensional models of the phase oscillators in the case of star configuration of coupling. Both systems of equations are reduced to a nonlinearly coupled system of pendulum equations. We prove that the transition from synchronous to asynchronous oscillations occurs via bifurcation of saddle-node equilibrium. In this connection the asynchronous regime can be partially synchronous rotations. We find that the reverse transition from asynchronous to synchronous regime occurs via bifurcation of homoclinic orbit both of the saddle equilibrium point and of the saddle periodic orbit. In the case of homoclinic loop of the saddle point the synchrony appears only from asynchronous mode without partially synchronized rotations. In the case of the homoclinic curve of the saddle periodic orbit the system undergoes a chaotic rotation regime which results in a random return to synchrony.

Keywords

Phase oscillators Synchronization Star coupling Homoclinic loop 

Notes

Acknowledgements

This work was supported by the RSF (Project No. 14-12-00811) (Sections 1, 2) and by the RFBR (project 15-01-08776) (Section 3).

References

  1. 1.
    Arfaimovich, V.S., Verichev, N.N., Rabinovich, M.I.: Stochastic synchronization of oscillations in dissipative systems. Radiophys. Quantum Electron. 29 (9), 795–803 (1986)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Pikovsky, A.S., Rosenblum, M.G., Kurths, J.: Synchronization - A Universal Concept in Nonlinear Science. Cambridge University Press, Cambridge (2001)CrossRefMATHGoogle Scholar
  3. 3.
    Osipov, G.V., Kurths, J., Zhou, Ch.: Synchronization in Oscillatory Networks. Springer, Berlin, Heidelberg (2007)CrossRefMATHGoogle Scholar
  4. 4.
    Mosekilde, E., Maistrenko, Yu., Postnov, D.: Chaotic Synchronization. Applications to Living Systems. World Scientific, Singapore (2002)CrossRefMATHGoogle Scholar
  5. 5.
    Manrubia, S.C., Mikhailov, A.S., Zanette, D.H.: Emergence of Dynamical Order: Synchronization Phenomena in Complex Systems. World Scientific, Singapore (2004)CrossRefMATHGoogle Scholar
  6. 6.
    Winfree, A.T.: Biological rhythms and the behavior of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967)CrossRefGoogle Scholar
  7. 7.
    Kuramoto, Y.: In: Araki, H. (ed.) Proceedings of International Symposium on Mathematical Problems in Theoretical Physics. Lecture Notes in Physics, vol. 39. Springer, New York (1975)Google Scholar
  8. 8.
    Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Springer, Berlin/Düsseldorf (1984)CrossRefMATHGoogle Scholar
  9. 9.
    Wiesenfeldt, K., Colet, P., Strogatz, S.: Frequency locking in Josephson junction arrays: connection with the Kuramoto model. Phys. Rev. E 57, 1563–1567 (1998)CrossRefGoogle Scholar
  10. 10.
    Kozyrev, G., Vladimirov, A.G., Mandel, P.: Global coupling with the time delay in an array of semiconductor lasers. Phys. Rev. Lett. 85 (18), 3809–3812 (2000)CrossRefGoogle Scholar
  11. 11.
    Michaels, D.C., Matyas, E.P., Jalife, J.: Mechanisms of sinoatrial pacemaker synchronization a new hypothesis. Circ. Res. 61 (5), 704–714 (1987)CrossRefGoogle Scholar
  12. 12.
    Brown, E., Holmes, P., Moehlis, J.: Globally coupled oscillator networks. In: Kaplan, E., Marsden, J.E., Sreenivasan, K.R. (eds.) Perspectives and Problems in Nonlinear Science: A Celebratory Volume in Honor of Larry Sirovich, pp. 183–215. Springer, Berlin (2003)CrossRefGoogle Scholar
  13. 13.
    Kopell, N., Ermentrout, G.B.: Coupled oscillators and the design of central pattern generators. Math. Biosci. 90, 87–109 (1988)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Neda, Z., Ravasz, E., Vicsek, T., Brecht, Y., Barabasi, A.-L.: Physics of the rhythmic applause. Phys. Rev. E 61, 6987–6992 (2000)CrossRefGoogle Scholar
  15. 15.
    Strogatz, S.H., Abrams, D.M., McRobie, A., Eckhardt, B., Ott, E.: Theoretical mechanics: crowd synchrony on the Millenium Bridge. Nature 438 (70640), 43–44 (2005)CrossRefGoogle Scholar
  16. 16.
    York, R.A., Compton, R.C.: Quasi-optical power combining using mutually synchronized oscillator arrays. IEEE Trans. Autom. Control 57 (4), 920–935 (2012)CrossRefGoogle Scholar
  17. 17.
    Dorfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: a survey. Automatica 50 (6), 1539–1564 (2014)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Acebron, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Modern Phys. 77 (1), 137–185 (2005)CrossRefGoogle Scholar
  19. 19.
    Belykh, V.N., Petrov, V.S., Osipov, G.V.: Dynamics of the finite-dimensional Kuramoto model: global and cluster synchronization. Regul. Chaotic Dyn. 20 (1), 37–48 (2015)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Lindsey, W.C.: Synchronization Systems in Communication and Control. Pearson Education, Upper Saddle River, NJ (1972)Google Scholar
  21. 21.
    Shalfeev, V.D., Matrosov, V.V.: Nonlinear Dynamics of the Phase Synchronization Systems. Publishing House of the Nizhny Novgorod State University, N. Novgorod (2013) (in Russian)Google Scholar
  22. 22.
    Arfaimovich, V.S., Nekorkin, V.I., Osipov, G.V., Shalfeev, V.D.: Stability, Structures and Chaos in Nonlinear Synchronization Networks. World Scientific, Singapore (1994)Google Scholar
  23. 23.
    Frasca, M., Bergner, A., Kurths, J., Fortuna, L.: Bifurcations in a star-like network of Stuart-Landau oscillators. Int. J. Bifurcation Chaos 22 (7), 1250173 (2012)CrossRefMATHGoogle Scholar
  24. 24.
    Kazanovich, Y., Burylko, O., Borisyuk, R.: Competition for synchronization in a phase oscillator system. Physica D 261, 114–124 (2013)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Tanaka, H.A., Lichtenberg, A.J., Oishi, S.: First order phase transition resulting from finite inertia in coupled oscillator systems. Phys. Rev. Lett. 78, 2104 (1997)CrossRefGoogle Scholar
  26. 26.
    Tanaka, H.A., Lichtenberg, A.J., Oishi, S.: Self-synchronization of coupled oscillators with hysteretic responses. Physica D 100, 279 (1997)CrossRefMATHGoogle Scholar
  27. 27.
    Pecora, L., Carrol, T.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821 (1990)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Belykh, V.N., Belykh, I.V., Hasler, M.: Connection graph stability method for synchronized coupled chaotic systems. Physica D 195, 159–187 (2004)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Belykh, V.N., Osipov, G.V., Petrov, V.S., Suykens, J., Vandewalle J.: Cluster synchronization in oscillatory networks. Chaos 13, 037106 (2008)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Tricomi, F.: Integrazione di un’ equazione differenziale presentatasi in elettrotecnica. Annali della R. Scuola Normale Superiore di Pisa Ser. 11 2, 1 (1933)Google Scholar
  31. 31.
    Urabe, M.: The least upper bound of a damping coefficient ensuring the existence of a periodic motion of a pendulum under constant torque. J. Sci. Hiroshima Univ. Ser. A 18, 379–389 (1955)MathSciNetMATHGoogle Scholar
  32. 32.
    Belykh, V.N., Pedersen, N., Soerenses, O.: Shunted-Josephson-junction model. I. The autonomous case. Phys. Rev. B 16, 4853 (1977)Google Scholar
  33. 33.
    Belykh, V.N., Pedersen, N., Soerenses, O.: Shunted-Josephson-junction model. II. The nonautonomous case. Phys. Rev. B 16, 4860 (1977)Google Scholar
  34. 34.
    Olmi, S., Navas, A., Boccaletti, S., Torcini, A.: Hysteretic transitions in the Kuramoto model with inertia. Phys. Rev. E 90, 042905 (2014)CrossRefGoogle Scholar
  35. 35.
    Belykh, V.N.: Homoclinic and heteroclinic linkages in concrete systems: nonlocal analysis and model maps. Adv. Math. Sci., Amer. Math. Soc. Transl. 2 (200), 51–62 (2000)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Vladimir N. Belykh
    • 1
  • Maxim I. Bolotov
    • 2
  • Grigory V. Osipov
    • 2
  1. 1.Volga State University of Water TransportNizhny NovgorodRussia
  2. 2.Nizhny Novgorod UniversityNizhny NovgorodRussia

Personalised recommendations