Coherence–Incoherence Transition and Properties of Different Types of Chimeras in a Network of Nonlocally Coupled Chaotic Maps

  • Vadim S. Anishchenko
  • Tatiana E. Vadivasova
  • Galina I. Strelkova
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 20)


We explore the bifurcation transition from coherence to incoherence in an ensemble of nonlocally coupled logistic maps. It is shown that two types of chimera states, namely amplitude and phase, can be found in this network. We reveal a bifurcation mechanism by analyzing the evolution of space-time profiles and the coupling function with varying coupling coefficient and formulate the conditions for realizing the chimera states in the ensemble. The regularities are established for the evolution of cross-correlations of oscillations in the network elements at the bifurcations related to the coupling strength variation. We reveal the features of cross-correlations for phase and amplitude chimera states. It is also shown that the effect of time intermittency between the amplitude and phase chimeras can be realized in the considered ensemble.


Logistic map Chimera Nonlocal coupling Networks 



The authors acknowledge support from SFB910. Vadim S. Anishchenko, acknowledges support from the Russian Science Foundation (grant No. 16-12-10175). Tatiana E. Vadivasova and Galina I. Strelkova acknowledge support from RFBR (grants No. 14-52-12002 and No. 15-02-02288).


  1. 1.
    Abrams, D.M., Strogatz, S.H.: Chimera States for Coupled Oscillators. Phys. Rev. Lett. 93, 174102 (2004)CrossRefGoogle Scholar
  2. 2.
    Abrams, D.M., Strogatz, S.H.: Chimera states in a ring of nonlocally coupled oscillators. Int. J. Bifurcation Chaos 16, 21–37 (2006)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Afraimovich, V.S., Nekorkin, V.I., Osipov, G.V., Shalfeev, V.D.: Structures and Chaos in Nonlinear Synchronization Networks. World Scientific, Singapore (1995)CrossRefMATHGoogle Scholar
  4. 4.
    Anishchenko, V.S., Aranson, I.S., Postnov, D.E., Rabinovich, M.I.: Spatial synchronization and chaos development bifurcations in a chain of coupled oscillators. Dokl. USSR Acad. Sci. 286 (5), 1120–1124 (1986) (in Russian)Google Scholar
  5. 5.
    Anishchenko, V.S., Astakhov, V.V., Vadivasova, T.E., Neiman, A.B., Schimansky-Geier, L.: Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development. Springer, Berlin (2007)MATHGoogle Scholar
  6. 6.
    Ashwin, P., Buescu, J., Stewart, I.: From attractor to chaotic saddle: tale of transverse instability. Phys. Lett. A 193, 126–139 (1994)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Astakhov, V.V., Bezruchko, B.P., Ponomarenko, V.I.: Multistability formation, isomer classification and their evolution in coupled Feigenbaum’s systems. Izv. Vuz. Radiophys. 34, 35–39 (1991) (in Russian)Google Scholar
  8. 8.
    Astakhov, V., Shabunin, A., Kapitaniak, T., Anishchenko, V.: Loss of chaos synchronization through the sequence of bifurcations of saddle periodic orbits. Phys. Rev. Lett. 79, 1014–1017 (1997)CrossRefGoogle Scholar
  9. 9.
    Bogomolov, S.A., Strelkova, G.I., Schöll, E., Anishchenko, V.S.: Amplitude and Phase Chimeras in an Ensemble of Chaotic Oscillators. Tech. Phys. Lett. 42 (7), 763–766 (2016)CrossRefGoogle Scholar
  10. 10.
    Bogomolov, S.A., Slepnev, A.V., Strelkova, G.I., Schöll, E., Anishchenko, V.S.: Mechanisms of Appearance of Amplitude and Phase Chimera States in Ensembles of Nonlocally Coupled Chaotic Systems. Commun. Nonlinear Sci. Numer. Simul. 43, 25–36 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Epstein, I.R., Pojman, J.A.: An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos. Oxford University Press, New York (1998)Google Scholar
  12. 12.
    Feigenbaum, M.J.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19, 25–52 (1978)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer Series in Synergetics. Springer, Berlin (1984)CrossRefMATHGoogle Scholar
  14. 14.
    Kuramoto, Y., Battogtokh, D.: Coexistence of Coherence and Incoherence in Nonlocally Coupled Phase Oscillators. Nonlinear Phenom. Complex Syst. 4, 380–385 (2002)Google Scholar
  15. 15.
    Landa, P.S.: Nonlinear Oscillations and Waves in Dynamical Systems. Springer, Berlin (1996)CrossRefMATHGoogle Scholar
  16. 16.
    Maistrenko, Yu., Kapitaniak, T.: Different types of chaos synchronization in two coupled piecewise linear maps. Phys. Rev. E 54, 3285–3292 (1996)CrossRefGoogle Scholar
  17. 17.
    Malchow, H., Petrovskii, S.V., Venturino, E.: Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation. Chapman and Hall/CRC, London/Boca Raton, FL (2007)MATHGoogle Scholar
  18. 18.
    Mikhailov, A.S., Loskutov, A.: Foundation of Synergetics. Complex Patterns. Springer, Berlin (1995)Google Scholar
  19. 19.
    Nagai, Y., Lai, Y.Ch.: Characterization of blowout bifurcation by unstable periodic orbits. Phys. Rev. E 55, R1251–R1254 (1997)CrossRefGoogle Scholar
  20. 20.
    Nekorkin, V.I., Velarde, M.G.: Synergetic Phenomena in Active Lattices. Springer, Berlin (2002)CrossRefMATHGoogle Scholar
  21. 21.
    Oispov, G.V., Kurths, J., Zhou, Ch.: Synchronization in Oscillatory Networks. Springer, Berlin (2007)CrossRefGoogle Scholar
  22. 22.
    Omelchenko, I., Maistrenko, Y., Hövel, P., Schöll, E.: Loss of coherence in dynamical networks: spatial chaos and chimera states. Phys. Rev. Lett. 106, 234102 (2011)CrossRefGoogle Scholar
  23. 23.
    Omelchenko, I., Riemenschneider, B., Hövel, P., Maistrenko, Y., Schöll, E.: Transition from spatial coherence to incoherence in coupled chaotic systems. Phys. Rev. E 85, 026212 (2012)CrossRefGoogle Scholar
  24. 24.
    Omelchenko, I., Omelchenko, O.E., Hövel, P., Schöll, E.: When nonlocal coupling between oscillators becomes stronger: patched synchrony or multichimera states. Phys. Rev. Lett. 110, 224101 (2013)CrossRefGoogle Scholar
  25. 25.
    Omelchenko, I., Zakharova, A., Hövel, P., Siebert, J., Schöll, E.: Nonlinearity of local dynamics promotes multi-chimeras. Chaos 25, 083104 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Omelchenko, I., Provata, A., Hizanidis, J., Schöll, E., Hövel, P.: Robustness of chimera states for coupled FitzHugh-Nagumo oscillators. Phys. Rev. E 91, 022917 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ott, E., Sommerer, J.C.: Blowout bifurcation in chaotic dynamical systems. Phys. Lett. A 188, 39–47 (1994)CrossRefGoogle Scholar
  28. 28.
    Panaggio, M.J., Abrams, D.M.: Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28, R67(1–18) (2015)Google Scholar
  29. 29.
    Pikovsky, A.S., Grassberger, P.: Symmetry breaking bifurcation for coupled chaotic attractors. J. Phys. A 24, 4587–4597 (1991)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Pikovsky, A.S., Rosenblum, M.G., Kurths, J.: Synchronization – A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)CrossRefMATHGoogle Scholar
  31. 31.
    Rabinovich, M.I.: Stochastic self-oscillations and turbulence. Physics–Uspekhi 21, 443–469 (1978)Google Scholar
  32. 32.
    Rabinovich, M.I., Trubetskov, D.I.: Introduction to the Theory of Oscillations and Waves, 1st edn. Nauka, Moscow (1984); Regular and Chaotic Dynamics, 2nd edn. Moscow–Izhevsk (2000) (in Russian)Google Scholar
  33. 33.
    Semenova, N., Zakharova, A., Schöll, E., Anishchenko, V.: Europhys. Lett. 112, 40002 (2015)CrossRefGoogle Scholar
  34. 34.
    Vüllings, A., Hizanidis, J., Omelchenko, I., Hövel, P.: New J. Phys. 16, 123039 (2016)CrossRefGoogle Scholar
  35. 35.
    Zakharova, A., Kapeller, M., Schöll, E.: Phys. Rev. Lett. 112, 154101 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Vadim S. Anishchenko
    • 1
  • Tatiana E. Vadivasova
    • 1
  • Galina I. Strelkova
    • 1
  1. 1.Department of PhysicsSaratov National Research State UniversitySaratovRussia

Personalised recommendations